Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (8): 1567-1574    DOI: 10.3866/PKU.WHXB201506171
CATALYSIS AND SURFACE SCIENCE     
Preparation of Nano-Manganite Loaded Titanium Electocatalytic Membrane for the Catalytic Oxidation of Benzyl Alcohol
Wen-Jie. TIAN1,2,Hong. WANG1,2,Zhen. YIN1,3,*(),Ying. YANG1,2,Jian-Xin. LI1,2,*()
1 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, P. R. China
2 School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
3 School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
Download: HTML     PDF(9918KB) Export: BibTeX | EndNote (RIS)      

Abstract  

MnOx nanoparticles obtained by the emulsion method were loaded on a microporous tubular titanium membrane to prepare a functional MnOx/Ti electrocatalytic membrane. The effects of calcination temperature on the crystal structure of MnOx as well as the electrochemical properties and catalytic performance to oxidize benzyl alcohol of MnOx/Ti membrane were systematically investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), cyclic voltammetry (CV), chronoamperometry (CA), and other characterization methods. The results indicated that the crystal structure of MnOx was gradually transformed from Birnessite-MnO2 to K0.27MnO2, and finally to α-MnO2 from Mn3O4 with increasing calcination temperature. The α-MnO2 particles in the MnOx/Ti electrocatalytic membrane showed high crystallinity and uniform particle size (less than 30 nm). The superior electrochemical properties and catalytic performance of α-MnO2/Ti membrane obtained at a calcination temperature of 450 ℃ could be attributed to the binding effects between unsaturated coordination atoms of Mn and oxygen vacancies with the Ti substrate. The α-MnO2/Ti membrane obtained at 450 ℃ was used as the anode to assemble an electrocatalytic membrane reactor to oxidize benzyl alcohol. 64% conversion of benzyl alcohol and 79% selectivity to benzaldehyde was achieved under the operating conditions: reaction temperature 25 ℃, aqueous benzyl alcohol solution of 50 mmol·L-1, current density 2 mA·cm-2, and residence time 15 min.



Key wordsPorous titanium membrane      Electrocatalytic membrane reactor      Manganite      Benzyl alcohol      Catalytic oxidation     
Received: 20 January 2015      Published: 17 June 2015
MSC2000:  O643  
  O646  
  TQO53  
Fund:  the National Natural Science Foundation of China(21206119, 21303119);Changjiang Scholars and InnovativeResearch Team in University of Ministry of Education of China(IRT13084)
Corresponding Authors: Zhen. YIN,Jian-Xin. LI     E-mail: yinzhen@tjpu.edu.cn;jxli@tjpu.edu.cn
Cite this article:

Wen-Jie. TIAN,Hong. WANG,Zhen. YIN,Ying. YANG,Jian-Xin. LI. Preparation of Nano-Manganite Loaded Titanium Electocatalytic Membrane for the Catalytic Oxidation of Benzyl Alcohol. Acta Physico-Chimica Sinca, 2015, 31(8): 1567-1574.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201506171     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I8/1567

Fig 1 Scheme of MnOx/Ti electrocatalystic membrane reactor
Fig 2 Sketch map of benzyl alcohol oxidation reaction
Fig 3 XRD spectra of MnOx calcined at different calcination temperatures and MnOx/Ti electrocatalystic membrane calcined at 450 ℃
Crystal structure of MnOxT/℃Crystallite dimension/nm
Birnessite-MnO2 252.5
Mn3O42506.3
K0.27MnO225012.3
Mn3O435019.0
α-MnO235019.2
α-MnO245028.9
Table 1 Crystallite dimension of MnOx calculated by Scherrer equation
Fig 4 SEM images of MnOx/Ti electrocatalystic membrane calcined at different calcination temperatures
Fig 5 XPS spectra of Mn 2p and Ti 2p orbits obtained from MnOx/Ti electrocatalytic membrane
Fig 6 XPS spectra of α-MnO2/Ti, α-MnO2 powder, and Ti-based film (a) 450 ℃ α-MnO2/Ti; (b) 450 ℃ α-MnO2 powder; (c) Ti matrix
Fig 7 Cyclic voltammetry spectra of MnOx/Ti electrocatalytic membrane at different calcination temperatures
Fig 8 Chronoamperometry for MnOx/Ti electrocatalytic membrane at different calcination temperatures
Fig 9 Comparison of the oxidation performance of Ti matrix and MnOx/Ti membranes obtained at different calcination temperatures
1 Gelalcha F. G. Chemical Reviews 2007, 107 (7), 3338.
2 Dan I. E. ; Jennifer K. E. ; Philip L. ; Benjamin S. ; Albert F. C. ; Andrew A. H. ; Masashi W. ; Christopher J. K. ; David W. K. ; Graham J. H. Science 2006, 311, 5759.
3 Opembe N. N. ; Guild C. ; King Ondu C. ; Nelson N. C. ; Slowing I. I. ; Suib S. L. Industrial & Engineering Chemistry Research 2014, 53 (49), 19044.
4 Rezaei S. E. ; Zonoz F. M. ; Estiri M. ; Tayebee R. Industrial & Engineering Chemistry Research 2011, 50 (4), 1837.
5 Parlett C. M. A. ; Bruce D. W. ; Hondow N. S. ; Lee A. F. ; Wilson K. ACS Catalysis 2011, 1 (6), 636.
6 Mallat T. ; Baiker A. Chemical Reviews 2004, 104 (6), 3037.
7 Guo Z. ; Liu B. ; Zhang Q. ; Deng W. ; Wang Y. ; Yang Y. Chemical Society Reviews 2014, 43 (10), 3480.
8 Camilla P. F. C. Green Chem 2012, 14, 547.
9 Choudhary V. R. ; Chaudhari P. A. ; Narkhede V. S. Catalysis Communications 2003, 4 (4), 171.
10 Su Y. ; Wang L. ; Liu Y. ; Cao Y. ; He H. ; Fan K. Catalysis Communications 2007, 8 (12), 2181.
11 Li J. ; Wang H. ; Li J. X. ; Guan Q. Q. ; Yang Y. Membrane Science and Technology 2013, 33 (6), 64.
11 李娇; 王虹; 李建新; 管崎崎; 杨阳. 膜科学与技术, 2013, 33 (6), 64.
12 Li J. ; Li J. ; Wang H. ; Cheng B. ; He B. ; Yan F. ; Yang Y. ; Guo W. ; Ngo H. H. Chemical Communications 2013, 49 (40), 4501.
13 Wang H. ; Wang H. ; Li J. ; Bin D. ; Yin Z. ; Kang J. ; He B. Electrochimica Acta 2014, 123, 33.
14 Bin D. ; Wang H. ; Li J. ; Wang H. ; Yin Z. ; Kang J. ; He B. ; Li Z. Electrochimica Acta 2014, 130, 170.
15 Fang X. ; Yin Z. ; Wang H. ; Li J. ; Liang X. ; Kang J. ; He B. Journal of Catalysis 2015, 329, 187.
16 Xiao W. ; Wang D. ; Lou X. W. The Journal of Physical Chemistry C 2010, 114 (3), 1694.
17 Chen H. ; He J. ; Zhang C. ; He H. The Journal of Physical Chemistry C 2007, 111 (49), 18033.
18 Lee J. W. ; Hall A. S. ; Kim J. ; Mallouk T. E. Chemistry of Materials 2012, 24 (6), 1158.
19 Devaraj S. ; Munichandraiah N. The Journal of Physical Chemistry C 2008, 112 (11), 4406.
20 Nesbitt H. W. B. The American Mineralogist 1998, 83 (3-4), 305.
21 Beyreuther E. ; Grafstr M. S. ; Eng L. M. Physical Review B 2006, 73 (15), 155425.
22 Kang J. ; Hirata A. ; Qiu H. J. ; Chen L. ; Ge X. ; Fujita T. ; Chen M. Advanced Materials 2014, 26 (2), 269.
23 Dai Y. ; Li J. H. ; Peng Y. ; Tang X. F. Acta Phys.-Chim. Sin 2012, 7, 1771.
23 戴韵; 李俊华; 彭悦; 唐幸福. 物理化学学报, 2012, 7, 1771.
24 Crist, B. V. Handbook of Monochromatic XPS Spectra, Volume 1: The Elements of Native Oxides; Wiley & Sons; Chichester, 2000; pp 515-519.
25 Chen Q. Y. ; Tong H. X. ; Yin Z. L. ; Hu H. P. ; Li J. ; Liu L. L. Acta Phys. -Chim. Sin 2007, 12, 1917.
25 陈启元; 童海霞; 尹周澜; 胡慧萍; 李洁; 刘亮亮. 物理化学学报, 2007, 12, 1917.
26 Huang Y. ; Li H. ; Balogun M. ; Liu W. ; Tong Y. ; Lu X. ; Ji H. ACS Applied Materials & Interfaces 2014, 6 (24), 22920.
27 Zhang X. J. ; Liu Q. J. ; Deng S. G. ; Chen J. ; Gao P. Acta Phys. Sin 2011, 08, 567.
27 张学军; 柳清菊; 邓曙光; 陈娟; 高攀. 物理学报, 2011, 08, 567.
28 Lu X. ; Wang G. ; Zhai T. ; Yu M. ; Gan J. ; Tong Y. ; Li Y. Nano Letters 2012, 12 (3), 1690.
29 Zhang Y. ; Sun C. ; Lu P. ; Li K. ; Song S. ; Xue D. CrystEngComm 2012, 14 (18), 5892.
30 Cheng F. ; Su Y. ; Liang J. ; Tao Z. ; Chen J. Chemistry of Materials 2010, 22 (3), 898.
31 Dupont M. ; Hollenkamp A. F. ; Donne S. W. Electrochimica Acta 2013, 104, 140.
[1] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1855-1864.
[2] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1681-1688.
[3] Jun DU,Xiang-Ying WU,Xing-Peng PAN,Jiang YU. Oxygenation and Oxidation Desulfurization Properties of CeO2/NaY Catalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2337-2345.
[4] Yue LI,Ting-Ting ZHANG,Juan WANG,Zhen ZHU,Bing JIA,Jiang YU. Catalytic Combustion of n-Hexanal Using Cu-Mn Composite Oxide Supported on TiO2[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2084-2092.
[5] Lei WANG,Han-Mei YIN,Jian-Hao WANG,Li-Zhi WU,Yue-Ming LIU. Synthesis and Catalytic Oxidation Performance of B-TS-1[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2574-2580.
[6] Yan. LI,Ting-Ting. ZHANG,Yue. LI,Bing. JIA,Hua-Hua. TAN,Jiang. YU. Influence of Calcination Temperature on Dechlorination Performance of V2O5/CNTs-TiO2 Catalysts[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1541-1548.
[7] XIE Xing-Xing, FEI Zhao-Yang, ZOU Chong, LI Zheng-Zhou, CHEN Xian, TANG Ji-Hai, CUI Mi-Fen, QIAO Xu. Effects of Rare-Earth Additives on Structures and Performances of CuO-CeO2-SiO2 Catalysts for Recycling Cl2 from HCl Oxidation[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1153-1161.
[8] CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 302-308.
[9] ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 353-359.
[10] TAN Hai-Yan, WU Jin-Ping. Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 715-722.
[11] CHEN Yong-Dong, WANG Lei, GUAN Xiao-Xu, LIU Yong-Bing, GONG Mao-Chu, CHEN Yao-Qiang. Catalytic Oxidation of Soluble Organic Fraction in Diesel Exhausts Using Composite Oxides (CeO2)x(La-Al2O3)1-x[J]. Acta Physico-Chimica Sinca, 2013, 29(05): 1048-1054.
[12] CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Physico-Chimica Sinca, 2013, 29(05): 989-995.
[13] XU Wen-Qing, ZHAO Jun, WANG Hai-Rui, ZHU Ting-Yu, LI Peng, JING Peng-Fei. Catalytic Oxidation Activity of NO on TiO2-Supported Mn-Co Composite Oxide Catalysts[J]. Acta Physico-Chimica Sinca, 2013, 29(02): 385-390.
[14] MENG Zhong-Hua, YANG Peng, ZHOU Ren-Xian. Influence of Ce/Cr Ratio on 2-CrOx Mixed Oxide Catalysts for the Catalytic Oxidation of 1,2-Dichloroethane[J]. Acta Physico-Chimica Sinca, 2013, 29(02): 391-396.
[15] NIE Su-Lian, ZHAO Yan-Chun, FAN Jie-Wen, TIAN Jian-Niao, NING Zhen, LI Xiao-Xiao. Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation[J]. Acta Physico-Chimica Sinca, 2012, 28(04): 871-876.