Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (9): 1815-1822    DOI: 10.3866/PKU.WHXB201507201
PHYSICAL CHEMISTRY OF MATERIALS     
Fast Adsorption Removal of Congo Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method
Long-Hui. NIE1,2(),Qiao. TAN1,Wei. ZHU1,Qi. WEI1,Zhi-Kui. LIN1
1 School of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan 430068, P. R. China
2 The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Wuhan 430068, P. R. China
Download: HTML     PDF(11948KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hierarchical nanostructured γ-Al2O3 hollow microspheres were synthesized from KAl(SO4)2 and urea precursors by the microwave-assisted hydrothermal (MAH) method at 180 ℃ for 20 min followed by calcination at 600 ℃ for 2 h. The as-prepared sample was used to remove the organic dye Congo red (CR) from aqueous solution. The results showed that the obtained γ-Al2O3 hollow microspheres are about 0.8-1.0 μm in diameter with a shell thickness of approximately 200 nm. The γ-Al2O3 hollow microspheres have a high surface area of 243 m2·g-1 and a hierarchical meso-macroporous structure, which is beneficial for mass transfer in liquid processes. Therefore, the prepared γ-Al2O3 hollow microspheres exhibit faster adsorption and enhanced adsorption performance for CR than particles prepared by the hydrothermal method and commercial γ-Al2O3. The adsorption kinetic data follow the pseudo-second-order equation and the equilibrium data fit well to the Langmuir model. The maximum adsorption capacity (qmax) of the obtained γ-Al2O3 hollow microspheres calculated by the Langmuir model is up to 515.4 mg·g-1 at 25 ℃. The γ-Al2O3 hollow microspheres prepared by the microwave-assisted hydrotherm method show promise as an adsorbent for environmental applications due to their hierarchical porous structure, high surface area, large pore volume, and adsorption capacity.



Key wordsHierarchically porous material      γ-Al2O3      Congo red      Adsorption kinetics     
Received: 03 April 2015      Published: 20 July 2015
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(51572074);Natural Science Foundation of Hubei Province, China(2011CDB079);Hubei College Student Innovation Training Project, China(201310500017);Open Fund of Key Laboratory of Catalysis andMaterials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, China(CHCL12003)
Cite this article:

Long-Hui. NIE,Qiao. TAN,Wei. ZHU,Qi. WEI,Zhi-Kui. LIN. Fast Adsorption Removal of Congo Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method. Acta Physico-Chimica Sinca, 2015, 31(9): 1815-1822.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201507201     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I9/1815

 
 
Sample SBET/(m2•g-1) Vpore/(cm3•g-1) dpore/nm
MWAO 243 0.90 15.2
HTAO 149 0.45 12.3
CAO 144 0.21 5.8
 
 
 
 
c0   qe, exp   Pseudo-second-order model
(mg·L-1) (mg·g-1) qe, cal/(mg·g-1) k2/(g·mg-1·min-1) R2
45 55.4 55.4 0.283 0.9999
90 111.2 111.2 0.610 1
180 221.6 221.7 0.287 1
240 291.5 292.4 0.034 0.9999
360 425.7 427.2 0.010 0.9999
 
 
c0/(mg•L-1) qe, exp/(mg•g-1) Intra-particle diffusion model
kd1/(mg•g-1 •min-1/2) kd2/(mg•g-1•min-1/2) kd3/(mg•g-1•min-1/2) c1 c2 c3 R12 R22 R32
45 55.4 53.6 0 0 54.24 1 0.902
90 111.2 110.3 0 0 110.6 1 0.899
180 221.6 217.8 0 0 220.3 1 0.898
240 291.5 266.0 8.804 0 0 8.804 291.1 1 0.871 0.857
360 425.7 369.5 14.82 0 0 14.82 413.7 1 0.781 0.794
 
 
Langmuir model Freundlich model
qm/(mg•g-1) kL/(L•mg-1) RL R2 n kF/(mg•g-1)(L•mg-1)1/n R2
515.4 0.235 0.012 0.9941 1.84 100.4 0.9379
 
 
Adsorbent Adsorption capacity Reference
(mg•g-1)
γ-Al2O3 (MWAO) 515.4 (L) this work
CoFe1.93Gd0.07O4 263.2 (L) 25
BiOI architectures 216.8 (L) 8
spindle-like γ-Al2O3 176.7 (L) 4
MgO nanoplates 303.0 (L) 9
nanorod γ-Al2O3 83.8 (E) 13
CeO2 hollow spheres 84.0 (E) 10
NiO 223.8 (L) 11
Urchin-like Fe2O3 66.0 (L) 6
Urchin-like FeOOH 239 (L) 6
MnO2 hollow microspheres 60.0 (E) 12
MFe2O4 (M = Mn, Fe, Co, Ni) 244.5 (L) 26
γ-Al2O3 826.4 (L), 835.0 (E) 27
CoFe2-xMxO4 605.4 (E) 28
activated carbon 189.0 (L) 29
silica 294.1 (L) 30
mesoporous Fe2O3 53.0 (E) 7
 
1 Jalil A. A. ; Triwahyono S. ; Adam S. H. ; Rahim N. D. ; Aziz M. A. ; Hairom N. H. ; Razali N. A. ; Abidin M. A. ; Mohamadiah M. K. J.Hazard. Mater 2010, 181, 755.
2 Vimonsesa V. ; Lei S. ; Ji B. ; Chowd C. W. K. ; Saint C. Chem. Eng. J 2009, 148, 354.
3 Asencios Y. J. O. ; Sun-Kou M. R. Appl. Surf. Sci 2012, 258, 10002.
4 Cai W. Q. ; Yu J. G. ; Jaroniec M. J.Mater. Chem 2010, 20, 4587.
5 Xu J. S. ; Zhu Y. J. J.Colloid Interface Sci 2012, 385, 58.
6 Fei J. B. ; Cui Y. ; Zhao J. ; Gao L. ; Yang Y. ; Li J. B. J.Mater. Chem 2011, 21, 11742.
7 Yu C. ; Dong X. ; Guo L. ; Li J. ; Qin F. ; Zhang L. Z. ; Shi J. ; Yan D. J.Phys. Chem. C 2008, 112, 13378.
8 Ai L. ; Zeng Y. ; Jiang J. Chem. Eng. J 2014, 235, 331.
9 Hu J. ; Song Z. ; Chen L. ; Yang H. ; Li J. ; Richards R. J.Chem. Eng. Data 2010, 55, 3742.
10 Yang Z. ; Wei J. ; Yang H. ; Liu L. ; Liang H. ; Yang Y. Eur. J.Inorg. Chem 2010, 5, 3354.
11 Ai L. ; Zeng Y. Chem. Eng. J 2013, 215- 216, 269..
12 Fei J. ; Cui Y. ; Yan X. ; Qi W. ; Yang Y. ; Wang K. ; He Q. ; Li J. Adv. Mater 2008, 20, 452.
13 Cai W. Q. ; Hu Y. Z. ; Chen J. ; Zhang G. X. ; Xia T. Cryst. Eng. Commun 2012, 14, 972.
14 Zhang C. ; Zhang H. ; Du B. ; Hou R. ; Guo S. J.Colloid Interface Sci 2012, 368, 97.
15 Kong L. ; Lu X. ; Bian X. ; Zhang W. ; Wang C. J.Solid State Chem 2010, 183, 2421.
16 Nie L. H. ; Meng A. Y. ; Yu J. G. ; Jaroniec M. Scientific Reports 2013, 3, 3215.
17 Cai W. Q. ; Yu J. G. ; Mann S. Microporous Mesoporous Mat 2009, 122, 42.
18 Wu X. Y. ; Zhang B. Q. ; Hu Z. S. Mater. Lett 2012, 73, 169.
19 Wu X. Y. ; Wang D. B. ; Hu Z. S. ; Gu G. H. Mater. Chem. Phys 2008, 109, 560.
20 Cai W. Q. ; Yu J. G. ; Cheng B. ; Su B. L. ; Jaroniec M. J.Phys. Chem. C 2009, 113 (14739)
21 Feng Y. ; Zhang L. ; Gu G. H. ; Hu Z. S. Rare Metal Mat. Eng 2007, 36, 134.
22 Ren T. Z. ; Yuan Z. Y. ; Su B. L. Langmuir 2004, 20, 1531.
23 Nie L. ; Deng K. ; Yuan S. ; Zhang W. ; Tan Q. Mater. Lett 2014, 132, 369.
24 Sing K. S. W. ; Everett D. H. ; Haul R. A. W. ; Moscou L. ; Pierotti R. A. ; Rouquerol J. ; Siemieniewska T. Pure Appl. Chem 1985, 57, 603.
25 Zhao X. ; Wang W. ; Zhang Y. ; Wu S. ; Li F. ; Liu J. P. Chem. Eng. J 2014, 250, 164.
26 Wang L. ; Li J. ; Wang Y. ; Zhao L. ; Jiang Q. Chem. Eng. J 2012, 181- 182, 72..
27 Lan S. ; Guo N. ; Liu L. ; Wu X. ; Li L. ; Gan S. Appl. Surf. Sci 2013, 283, 1032.
28 Zhang L. ; Lian J. ; Wang L. ; Jiang J. ; Duan Z. ; Zhao L. Chem. Eng. J 2014, 241, 384.
29 Lorenc-Grabowska E. ; Gryglewicz G. Dyes and Pigments 2007, 74, 34.
30 Du Q. ; Sun J. ; Li Y. ; Yang X. ; Wang X. ; Wang Z. ; Xia L. Chem. Eng. J 2014, 245, 99.
[1] SHEN Qi, FAN Ying-Ju, YIN Long, SUN Zhong-Xi. Two-Dimensional Continuous Online In situ ATR-FTIR Spectroscopic Investigation of Adsorption of Butyl Xanthate on CuO Surfaces[J]. Acta Physico-Chimica Sinca, 2014, 30(2): 359-364.
[2] DENG Lin, QI Zhi-Mei. Effect of Glass Silylation on the Adsorption Behavior of Rhodamine 6G and Methylene Blue[J]. Acta Physico-Chimica Sinca, 2010, 26(07): 1923-1928.
[3] SUN Xiao-Li, ZENG Qing-Xuan, FENG Chang-Gen. Adsorption Kinetics of Chromium (VI) onto an Anion Exchange Fiber Containing Polyamine[J]. Acta Physico-Chimica Sinca, 2009, 25(10): 1951-1957.
[4] ZHOU Tian-Hua; ZHAO Jian-Xi. Adsorption Kinetics of Asymmetric Gemini Surfactants at Air/Water Interface[J]. Acta Physico-Chimica Sinca, 2007, 23(07): 1047-1052.