Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (9): 1633-1646    DOI: 10.3866/PKU.WHXB201507281
REVIEW     
Recent Progress in the Removal of Volatile Organic Compounds by Mesoporous Silica Materials and Supported Catalysts
Xiao-Dong. ZHANG1,*(),Yin. WANG1,Yi-Qiong. YANG1,Dan. CHEN2,*()
1 Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
2 College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, P. R. China
Download: HTML     PDF(6049KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Mesoporous silica materials have attracted much attention because of their large surface area, uniform pore-size distribution, large pore size, and wide potential applications in the fields of separation, adsorption, and catalysis. The progress in the removal of volatile organic compounds (VOCs, mainly containing hydrocarbons, methanol, formaldehyde, acetone, benzene, toluene, naphthalene, and ethyl acetate) by mesoporous silica materials and supported catalysts in recent years is reviewed. The effect of the structure of mesoporous silica materials on the adsorption of VOCs is discussed. We also discuss the catalytic performance and reaction mechanism for catalytic VOC oxidation over supported catalysts. The recent developments in catalytic combustion of toluene are examined in detail. We found that the surface environment, pore structure, and morphology of mesoporous silica materials are the main factors influencing adsorption of VOC molecules. The application of noble metal catalyst focuses on improving poison resistance and reducing cost. The research on non-noble metal catalysts focuses on developing supported mixed-metal oxide catalysts with high activity. Future developments of mesoporous silica materials and supported catalysts are highlighted. The design of the catalyst can be carried out from two aspects: the silica support and the mesoporous channel. This review will be helpful in choosing an appropriate catalyst for the removal of VOCs with high activity and stability.



Key wordsMesoporous silica material      Supported catalyst      Volatile organic compound      Adsorption      C atalytic oxidation      Noble metal      Non-noble metal     
Received: 27 April 2015      Published: 28 July 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21507086, 21507109);Shanghai Sailing Program, China(14YF1409900);Shanghai University Young Teacher Program, China(ZZSLG14014);Hujiang Foundation Research Base Program, China(B14003, D14004);Natural Science Fund for Colleges and Universities in Jiangsu Province, China(15KJB610016);Open Foundation of Key Laboratoryof Industrial Ecology, China(KLIEEE-14-08)
Corresponding Authors: Xiao-Dong. ZHANG,Dan. CHEN     E-mail: fatzhxd@126.com;chendan@yzu.edu.cn
Cite this article:

Xiao-Dong. ZHANG,Yin. WANG,Yi-Qiong. YANG,Dan. CHEN. Recent Progress in the Removal of Volatile Organic Compounds by Mesoporous Silica Materials and Supported Catalysts. Acta Phys. -Chim. Sin., 2015, 31(9): 1633-1646.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201507281     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I9/1633

Adsorbent VOCs Adsorption capacity Adsorption temperature/℃ Reference Publication year
(g·g-1) (mmol·g-1)
SBA-15 benzene   0.65 20 32 2009
SBA-15 benzene + cyclohexane   0.330 + 0.524 20 32 2009
MCM-41 acetone 0.148   45 33 2009
SBA-15 toluene 0.08   30 34 2009
SBA-15 ethyl acetate 0.21   30 34 2009
SiO2 benzene 0.451   25 35 2009
SiO2 CS2 0.763   20 36 2010
MCM-41 toluene 0.051   40 37 2010
MCM-41 o-xylene 0.194   40 37 2010
MCM-41 mesitylene 0.489   40 37 2010
SBA-15 toluene 0.091   40 37 2010
SBA-15 o-xylene 0.17   40 37 2010
SBA-15 mesitylene 0.253   40 37 2010
SBA-15 benzene   0.91 20 38 2011
SBA-15 benzene + cyclohexane   0.32 + 0.54 20 38 2011
MCM-41 benzene   1.02 20 38 2011
MCM-41 benzene + cyclohexane   0.36 + 0.57 20 38 2011
MCM-48 benzene   0.98 20 38 2011
MCM-48 benzene + cyclohexane   0.37 + 0.58 20 38 2011
KIT-6 benzene   1.26 20 38 2011
KIT-6 benzene + cyclohexane   0.32 + 0.67 20 38 2011
MCM-41 toluene 0.012   25 39 2011
MCM-48 toluene 0.014   25 39 2011
SBA-15 toluene 0.191   30 40 2012
MCM-41 toluene 0.13   30 40 2012
SiO2 toluene 0.087   30 40 2012
SBA-15 butyradehyde 0.658   25 41 2014
SBA-16 butyradehyde 0.958   25 41 2014
MCM-41 butyradehyde 1.619   25 41 2014
KIT-6 butyradehyde 0.428   25 41 2014
silica n-hexane 0.773   25 42 2015
silicaous foams n-hexane 1.63   25 42 2015
Table 1 Recent results of adsorption of VOCs over mesoporous silica materials
Mesoporous support Heterogeneous catalysis Hydrocarbon 106φ(VOCs) Catalyst dosage/g Flow rate/ (mL·min-1) VOCs' conversion temperature/℃ Reference Publication year
SBA-15 Pd/LaMn0^4Fe0^6O3 methane 3000 0^05 50 450 (99%)c 46 2012
Al-MCM-41 Pd methane 10000 0.05 100 390 (50%), 447 (90%) 47 2013
MCM-41 Pd methane 10000 0.05 100 377 (50%), 453 (90%) 47 2013
Al-SBA-15 Pd methane 1500 0.09 250 350 (50%) 48 2014
SBA-15 Pd methane 1500 0.09 250 350 (90%) 48 2014
SBA-15 Pt n-hexane 200 0.03 31000 b 186 (90%) 49 2014
SiO2 Pt n-decane 200 0.04 400 475 (50%) 50 2013
SiO2 Pt/Al n-decane 200 0.04 400 203 (50%) 50 2013
SiO2 Pt/Zr n-decane 200 0.04 400 222 (50%) 50 2013
SiO2 Pt/Ti n-decane 200 0.04 400 274 (50%) 50 2013
SiO2 Pt/La n-decane 200 0.04 400 275 (50%) 50 2013
SiO2 Pt/Ca n-decane 200 0.04 400 345 (50%) 50 2013
SiO2 Pt/Mg n-decane 200 0.04 400 385 (50%) 50 2013
SiO2 Pt/Ce n-decane 200 0.04 400 405 (50%) 50 2013
SBA-15 Mn propene 1 : 6 a 0.1 100 400 (94%) 51 2009
SBA-15 Co propene 4500 0.05 100 240 (100%) 52 2014
a propene/oxygen molar ratio; b unit: h-1; c VOCs' conversion
Table 2 Recent results of catalytic oxidation of hydrocarbon over mesoporous silica-supported catalysts
Mesoporous support Heterogeneous catalysis φ(VOCs)/% Catalyst dosage/g Flow rate/ (mL·min-1) VOCs' conversion temperature/℃ Reference Publication year
silica Ag 10 0.05 50 350 (80%) a 53 2012
silica Pt 10 0.05 50 350 (20%) 53 2012
silica Pt-Ag 10 0.05 50 350 (40%) 53 2012
SBA-15 Pt 9.26 0.001 30 110 (0.5 s-1) b 54 2014
SBA-15 Ag-Cu 4 0.04 40 150 (96%) 55 2014
SBA-15 Ce 4 0.04 40 250 (7%) 56 2014
SBA-15 Cu/Ce 4 0.04 40 250 (6%) 56 2014
SBA-15 Au/Ce 4 0.04 40 250 (76%) 56 2014
SBA-15 CuAu/Ce 4 0.04 40 250 (100%) 56 2014
SBA-15 CeZr 4 0.04 40 250 (3%) 56 2014
SBA-15 Cu/CeZr 4 0.04 40 250 (7%) 56 2014
SBA-15 Au/CeZr 4 0.04 40 250 (24%) 56 2014
SBA-15 CuAu/CeZr 4 0.04 40 250 (100%) 56 2014
SBA-15 Zr 4 0.04 40 250 (1%) 56 2014
SBA-15 Cu/Zr 4 0.04 40 250 (15%) 56 2014
SBA-15 Au/Zr 4 0.04 40 250 (20%) 56 2014
SBA-15 CuAu/Zr 4 0.04 40 250 (100%) 56 2014
a VOCs' conversion; b turnover frequency (TOF)
Table 3 Recent results of catalytic oxidation of methanol over mesoporous silica-supported catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g Flow rate/(mL·min-1) VOCs' conversion temperature/℃ Reference Publication year
SBA-15 MnO2 215 0.2 50 70 (50%), 120 (100%) a 57 2011
SBA-15 Al-MnO2 215 0.2 50 160 (50%), 195 (100%) 57 2011
SBA-15 Ag 1000 0.2 50 50 (50%), 100 (100%) 58 2012
SiO2 Ag 10000 0.145 167 140 (50%), 200 (100%) 59 2013
SiO2 Ag/CeO2 10000 0.145 167 130 (50%), 180 (100%) 59 2013
SiO2 Ag/MnOx 10000 0.145 167 150 (50%), 180 (100%) 59 2013
SiO2 Ag/CeO2-MnOx 10000 0.145 167 140 (50%), 180 (100%) 59 2013
MCM-41 Ag 500 0.2 30 110 (50%), 130 (100%) 60 2014
MCM-41 Co 500 0.2 30 180 (50%) 60 2014
MCM-41 AgCo 500 0.2 30 60 (50%), 80 (100%) 60 2014
a VOCs' conversion
Table 4 Recent results of catalytic oxidation of formaldehyde over mesoporous silica-supported catalysts
Fig 1 Possible scheme for HCHO adsorption and surface reaction on different silver catalysts61
Fig 2 Scheme of HCHO adsorption and oxidation over catalysts63
Fig 3 Possible structure changes of catalysts and reaction path of HCHO catalytic oxidation on the Ag, Co, and AgCo catalysts60
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g GHSV/h-1 VOCs' conversion Temperature/℃ Reference Publication year
SiO2 Mn 1000 0.2 15000 220 (50%), 300 (90%) a 64 2011
SiO2 Cu 1000 0.2 15000 280 (50%), 350 (90%) 64 2011
SiO2 Fe 1000 0.2 15000 320 (50%), 350 (90%) 64 2011
SiO2 Al 1000 0.2 15000 330 (50%), 350 (90%) 64 2011
SiO2 Ce 1000 0.2 15000 200 (50%), 250 (90%) 64 2011
SiO2 Ce 1000 0.6 5000 150 (50%), 250 (100%) 64 2011
SiO2 Ce-Al 1000 0.2 15000 <  150 (50%), 250 (90%) 65 2011
SiO2 Ce-Cu 1000 0.2 15000 230 (50%), 300 (90%) 65 2011
SiO2 Ce-Mn 1000 0.2 15000 230 (50%), 300 (90%) 65 2011
SiO2 Ce/Al 1000 0.2 15000 116 (50%), 165 (90%) 66 2014
SiO2 Ce/Al 1000 0.2 15000 120 (50%), 175 (100%) 67 2015
a VOCs' conversion; GHSV: gas hourly space velocity
Table 5 Recent results of catalytic oxidation of acetone over mesoporous silica-supported catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g Flow rate/ (mL·min-1) VOCs' conversion temperature/℃ Reference Publication year
SBA-15 Pd 1440 0.3 <  350 231 (50%), 268 (90%) a 68 2009
MCM-48 Pd 1440 0.3 <  350 268 (50%), 332 (90%) 68 2009
MCM-41 Pd 1440 0.3 <  350 291 (50%), 367 (90%) 68 2009
MCM-48 Pd 1500 0.3 350 245 (50%), 292 (90%) 69 2010
MCM-48 Pd/ZSM-5 1500 0.3 350 192 (50%), 204 (90%) 69 2010
MCM-48 Pd/ZSM-5 1500 0.3 350 200 (50%), 209 (90%) 70 2010
SBA-15 Pd 1500 0.3 300 210 (50%), 230 (90%) 71 2010
Ti-SBA-15 Pd 1500 0.3 300 190 (50%), 210 (90%) 71 2010
SBA-15 Cu 10000 0.08 100 300 (50%), 350 (90%) 72 2010
SiO2 Pt 100 0.1 100 140 (50%), 160 (100%) 73 2014
a VOCs' conversion
Table 6 Recent results of catalytic oxidation of benzene over mesoporous silica-supported catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g Flow rate/ (mL·min-1) VOCs conversion temperature/℃ Reference Publication year
MCM-41 Pt 1000 0.1 100 150 (50%), 180 (90%) a 74 2009
fibrous silica Pt 200 0.025 450 180 (50%), 230 (90%) 75 2009
SBA-15 Pd 800 0.2 350 188 (50%), 212 (90%) 76 2010
Zr-Ce-SBA-15 Pd 800 0.1 <  300 168 (50%), 195 (90%) 77 2011
KIT-6 Pd 1000 0.3 350 212 (50%), 234 (90%) 78 2012
ZSM-5/KIT-6 Pd 1000 0.3 350 189 (50%), 197 (90%) 78 2012
Al-SBA-15 Pd 1000 0.3 350 183 (50%), 198 (90%) 79 2012
Al-SBA-15 Pd 1000 0.3 350 183 (50%), 192 (90%) 80 2012
SBA-15 Ag/Mn 2500 0.2 50 240 (50%), 260 (100%) 81 2013
a VOCs' conversion
Table 7 Recent results of catalytic oxidation of toluene over mesoporous silica-supported noble catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g Flow rate/ (mL·min-1) VOCs' conversion temperature/℃ Reference Publication year
SBA-15 Co 1000 0.2 113.2 290 (20%) b 83 2010
SBA-15 Cu-Co 1000 0.2 113.2 260 (50%), 285 (100%) 83 2010
SiO2 Fe-Mn 1000 0.2 113.2 260 (50%), 280 (100%) 84 2010
SBA-15 Cr-Cu 880 0.03 30 360 (100%) 85 2010
SBA-15 Cu 200 0.5 5000 a 250 (70%) 86 2010
SBA-15 Co 200 0.5 5000 a 250 (41%) 86 2010
SBA-15 Ni 200 0.5 5000 a 250 (50%) 86 2010
SBA-15 Mn-Cu 200 0.5 5000 a 250 (95%) 86 2010
SBA-15 Ce/Cu0.5Mn0.5 1000 0.5 283 480 (100%) 87 2011
Zr-Ce-SBA-15 Cu-Mn 700 0.5 400 247 (50%), 270 (95%) 88 2011
SBA-15 Mn 1600 0.2 70 265 (50%), 310 (90%) 89 2012
SBA-15 Mn 2500 0.2 50 280 (50%), 320 (100%) 90 2013
SBA-15 Cu/Ce 880 0.03 30 340 (50%) 91 2013
SiO2 Cu/TiO2 230 0.1 160 270 (50%), 320 (100%) 92 2013
SBA-15 Fe 1000 0.1 33.3 313 (50%), 365 (90%) 93, 94 2014
a space velocity (h-1); b VOCs' conversion
Table 8 Recent results of catalytic oxidation of toluene over mesoporous silica-supported transition metal catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage Space velocity/h-1 VOCs' conversion temperature/℃ Reference Publication year
SBA-15 LaCoO3 1000 0.1-0.2 g 20000 284 (50%), 320 (100%) a 95 2009
SBA-15 LaMnOx 8600 0.2 g 5000 205 (50%), 240 (90%) 96 2011
SBA-15 La0.8Sr0.2MnO3 8600 0.2 g 5000 240 (50%), 265 (90%) 97 2012
MCM-41 Pd/La0.8Ce0.2MnO3 4000 3 mL 20000 150 (50%), 235 (100%) 98 2014
MCM-41 La0.8Ce0.2MnO3 4000 3 mL 20000 203 (50%), 283 (100%) 98 2014
a VOCs' conversion
Table 9 Recent results of catalytic oxidation of toluene over mesoporous silica-supported perovskite catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g Space velocity/(g·h·L-1) Flow rate/ (mL·min-1) VOCs' conversion temperature/℃ CO2 yield temperature/℃ Reference Publication year
SBA-15 CuO 200 0.1   200 330 (100%) a 380 (60%) b 99 2010
SBA-15 CuO-CeO2 200 0.1   200 302 (100%) 325 (100%) 99 2010
SBA-15 Pt 400   0.016   190 (95%) 290 (100%) 100 2011
SBA-15 Ru 400   0.016   190 (95%) 450 (100%) 100 2011
SBA-15 Mo 400   0.016   190 (95%) 490 (90%) 100 2011
Al-SBA-15 Pt 400   0.016   190 (95%) 250 (100%) 100 2011
MFS CuO 300 0.1   180 600 (70%) - 101 2014
MCM-41 CuO 300 0.1   180 380 (75%) - 101 2014
a VOCs' conversion; b CO2 yield
Table 10 Recent results of catalytic oxidation of naphthalene over mesoporous silica-supported catalysts
Mesoporous support Heterogeneous catalysis 106φ(VOCs) Catalyst dosage/g Flow rate/ (mL·min-1) VOCs' conversion temperature/℃ Reference Publication year
SBA-15 Pd 1100 0.3 <  350 230 (50%), 256 (90%) a 68 2009
MCM-48 Pd 1100 0.3 <  350 239 (50%), 299 (90%) 68 2009
SBA-15 LaCoO3 1000 0.1-0.2 33.3 265 (50%), 290 (100%) 95 2009
SBA-15 Mn 315 0.25 500 200 (50%), 277 (100%) 104 2011
SBA-15 Pd 970-3670 0.3 <  350 220-255 (50%) 105 2012
SBA-15 Mn 500 0.25 500 227 (50%), 320 (100%) 106 2013
SBA-15 Cu/Ce 12000 0.03 170 323 (90%) 107 2013
KIT-6 Cu/Ce 12000 0.03 170 323 (90%) 107 2013
SiO2 Cu/Ce 12000 0.03 170 293 (100%) 108 2013
a VOCs' conversion
Table 11 Recent results of catalytic oxidation of ethyl acetate over mesoporous silica-supported catalysts
1 Kim Y. M. ; Harrad S. ; Harrison R. M. Environ. Sci. Technol 2001, 35 (6), 997.
2 Kim K. J. ; Ahn H. G. Microporous Mesoporous Mat 2012, 152, 78.
3 Lin C. C. ; Chien K. S. Sep. Purifi. Technol 2008, 63, 138.
4 Wang Z. H. Adv. Fine Petrochem 2007, 8 (4), 50.
4 王钟晖. 精细石油化工进展, 2007, 8 (4), 50.
5 Yu Z. Y. ; Jing X. L. ; Hua K. S. Chem. Ind. Eng. Prog 2007, 26 (5), 731.
5 于正一; 井新利; 花开胜. 化工进展, 2007, 26 (5), 731.
6 Yu F. L. ; Qu Z. P. ; Zhang X. D. ; Wang Y. J. Energy Chem 2013, 22 (6), 845.
7 Colmenares J. C. ; Magdziarz A. ; Łomot D. ; Chernyayeva O. ; Lisovytskiy D. Appl. Catal. B 2014, 147, 624.
8 Xiao G. ; Xu W. P. ; Wu R. B. ; Ni M. J. ; Du C. M. ; Gao X. ; Luo Z. Y. ; Cen K. F. Plasma Chem. Plasma P 2014, 34 (5), 1033.
9 Wu D. ; Quan X. ; Zhang Y. B. ; Zhao Y. Z. Biochem. Eng. J 2006, 32, 84.
10 Zhao D. ; Feng J. ; Huo Q. ; Melosh N. ; Fredrickson G. H. ; Chmelka B. F. ; Stucky G. D. Science 1998, 279, 548.
11 Kosuge K. ; Kubo S. ; Kikukawa N. ; Takemori M. Langmuir 2007, 23, 3095.
12 Bao X. H. Sci. China Ser. B 2009, 39 (10), 1125.
12 包信和. 中国科学B辑:化学, 2009, 39 (10), 1125.
13 Bell A. T. Science 2003, 299, 1688.
14 Cui W. Y. ; Hui J. X. Modern Chem. Ind 2014, 34 (12), 17.
14 崔维怡; 惠继星. 现代化工, 2014, 34 (12), 17.
15 Liu Z. J. ; Huang Y. F. ; Liu J. H. Natural Gas Chem. Ind 2014, 39 (2), 75.
15 刘志军; 黄艳芳; 刘金红. 天然气化工, 2014, 39 (2), 75.
16 Zhang G. H. ; Zhao F. Z. ; Ji S. F. ; Yin F. X. ; Li C. Y. Chem. Ind. Eng. Prog 2007, 26 (5), 624.
16 张广宏; 赵福真; 季生福; 银凤翔; 李成岳. 化工进展, 2007, 26 (5), 624.
17 Zhou D. S. ; Wang Z. L. ; Li G. P. ; Chen J. Q. Environ. Protec. Chem. Ind 2011, 31 (2), 134.
17 周大顺; 王志良; 李国平; 陈建秋. 化工环保, 2011, 31 (2), 134.
18 Pan H. Y. ; Zhang Y. ; Lin Q. ; Du X. ; Ge S. M. Chem. Ind. Eng. Prog 2011, 30 (8), 1726.
18 潘红艳; 张煜; 林倩; 杜旭; 阁世媚. 化工进展, 2011, 30 (8), 1726.
19 Zou X. B. ; Zhou X. ; Wu Y. Q. Environ. Sci. Survey 2013, 32 (6), 57.
19 邹祥波; 周恂; 吴云强. 环境科学导刊, 2013, 32 (6), 57.
20 Li W. L. ; Gong H. Acta Phys. -Chim. Sin 2010, 26 (4), 885.
20 黎维彬; 龚浩. 物理化学学报, 2010, 26 (4), 885.
21 Deng J. G. ; He S. N. ; Xie S. H. ; Yang H. G. ; Liu Y. X. ; Dai H. X. Chem. J. Chin. Univ 2014, 35, 1119.
21 邓积光; 何胜男; 谢少华; 杨黄根; 刘雨溪; 戴洪兴. 高等学校化学学报, 2014, 35, 1119.
22 Gibson L. T. Chem. Soc. Rev 2014, (22), 43.
23 Zhu J. J. ; Tao W. ; Xu X. L. ; Xiao P. ; Li J. L. Appl. Catal. B 2013, 130- 131, 197.
24 Ojala S. ; Pitkäaho S. ; Laitinen T. ; Koivikko N. N. ; Brahmi R. ; Gaálová J. ; Matejova L. ; Kucherov A. ; Päivärinta S. ; Hirschmann C. ; Nevanperä T. ; Riihimäki M. ; Pirilä M. ; Keiski R. L. Top. Catal 2011, 54, 1224.
25 Wu Z. L. ; Gao X. ; Wei E. Z. ; Luo Z. Y. ; Ni M. J. ; Cen K. F. Power System Eng 2004, 20 (2), 3.
25 吴祖良; 高翔; 魏恩宗; 骆仲泱; 倪明江; 岑可法. 电站系统工程, 2004, 20 (2), 3.
26 Qu X. F. ; Qu J. F. ; Li H. P. ; Zhu W. ; Zheng J. T. Environ. Poll. Control 2012, 34 (11), 14.
26 曲险峰; 曲峻峰; 李海鹏; 朱文; 郑经堂. 环境污染与防治, 2012, 34 (11), 14.
27 Li G. P. ; Hu Z. J. ; Li J. J. ; Yang Z. Y. ; He Z. ; Wang Z. L. Environ. Eng 2013, 31 (3), 71.
27 李国平; 胡志军; 李建军; 杨振亚; 何忠; 王志良. 环境工程, 2013, 31 (3), 71.
28 Arne M. ; Vandenbroucke R. M. ; Nathalie D. G. ; Christophe L. J. Hazard. Mater 2011, 195, 30.
29 Li J. N. ; Wang L. N. ; Qi T. ; Chu J. L. ; Liu C. H. ; Zhang Y. Prog. Chem 2008, 20 (6), 851.
29 李俊宁; 王丽娜; 齐涛; 初景龙; 刘长厚; 张懿. 化学进展, 2008, 20 (6), 851.
30 Chen Y. L. ; Zu Z. N. ; Wei L. ; Zhang B. P. Modern Chem. Ind 2011, 31 (2), 13.
30 陈云琳; 祖志楠; 魏琳; 张宝平. 现代化工, 2011, 31 (2), 13.
31 Wang X. Y. ; Ren Z. D. ; Zhu Y. C. ; Zhang Z. Y. ; Zhang K. C. Modern Chem. Ind 2012, 32 (4), 20.
31 汪晓燕; 任占冬; 朱玉婵; 张智勇; 张开诚. 现代化工, 2012, 32 (4), 20.
32 Hu Q. ; Li J. J. ; Hao Z. P. ; Li L. D. ; Qiao S. Z. Chem. Eng. J 2009, 149, 281.
33 Hung C. ; Bai H. ; Karthik M. Sep. Purif. Technol 2009, 64, 265.
34 Jin W. Y. ; Wang Y. J. ; Wang X. L. ; Guo M. N. ; Lu J. Q. ; Luo M. F. Ind. Catal 2009, 17 (11), 12.
34 金炜阳; 王月娟; 王雪俐; 郭美娜; 鲁继青; 罗孟飞. 工业催化, 2009, 17 (11), 12.
35 Chang W. M. ; Li J. P. ; Zhao N. ; Xiao F. K. ; Wei W. ; Sun Y. H. New Chem. Mater 2009, 37 (2), 26.
35 常文明; 李军平; 赵宁; 肖福魁; 魏伟; 孙予罕. 化工新型材料, 2009, 37 (2), 26.
36 Xie Z. Y. ; Xie Q. ; Li J. P. ; Wang F. ; Peng W. C. ; Zhao N. ; Xiao F. K. ; Wei W. ; Sun Y. H. Environ. Chem 2010, 29 (6), 1048.
36 谢遵园; 谢倩; 李军平; 王峰; 彭伟才; 赵宁; 肖福魁; 魏伟; 孙予罕. 环境化学, 2010, 29 (6), 1048.
37 Huang H. F. ; Chu X. ; Lu H. F. ; Zhang B. ; Chen Y. F. China Environ. Sci 2010, 30 (4), 442.
37 黄海凤; 褚翔; 卢晗锋; 张波; 陈银飞. 中国环境科学, 2010, 30 (4), 442.
38 Dou B. J. ; Hu Q. ; Li J. J. ; Qiao S. Z. ; Hao Z. P. J. Hazard. Mater 2011, 186, 1615.
39 Seliem M. K. ; Komarneni S. ; Cho Y. ; Lim T. ; Shahien M. G. ; Khalil A. A. ; El-Gaid I. M. A. Appl. Clay Sci 2011, 52, 184.
40 Zhang W. W. ; Qu Z. P. ; Li X. Y. ; Wang Y. ; Ma D. ; Wu J. J. J. Environ. Sci 2012, 24, 520.
41 Huang T. H. ; Zhao Y. J. ; Tian Z. F. ; Li X. L. ; Liu X. ; Zhao D. Y. Acta Phys. -Chim. Sin 2014, 30 (12), 2307.
41 黄天辉; 赵玉娟; 田兆福; 李小兰; 刘茜; 赵东元. 物理化学学报, 2014, 30 (12), 2307.
42 Wang H. N. ; Rong X. ; Han L. ; Tang M. ; Yu M. H. ; Zhang J. ; Huang W. Q. ; Chen R. Y. RSC Adv 2015, 5, 5695.
43 Huang H. F. ; Chu X. ; Lu H. F. ; Zhang B. ; Li Y. ; Chen Y. F. J. Chem. Eng. Chin. Univ 2011, 25 (2), 219.
43 黄海凤; 褚翔; 卢晗锋; 张波; 李瑛; 陈银飞. 高校化学工程学报, 2011, 25 (2), 219.
44 Huang H. F. ; Yin C. ; Chu X. ; Gu Y. Y. ; Lu H. F. Acta Scientiae Circumstantiae 2012, 32 (1), 123.
44 黄海凤; 殷操; 褚翔; 顾勇义; 卢晗锋. 环境科学学报, 2012, 32 (1), 123.
45 Hu Q. ; Dou B. J. ; Tian H. ; Li J. J. ; Li P. ; Hao Z. P. Microporous Mesoporous Mat 2010, 129, 30.
46 Liotta L. F. ; Di Carlo G. ; Pantaleo G. ; Hernandez Garrido J. C. ; Venezia A. M. Top. Catal 2012, 55 (11-13), 782.
47 Gannouni A. ; Albela B. ; Zina M. S. ; Bonneviot L. Appl. Catal. A 2013, 464- 465, 116.
48 Boutros M. ; Gálvez M. E. ; Onfroy T. ; Da Costa P. Microporous Mesoporous Mat 2014, 183, 1.
49 Usón L. ; Colmenares M. G. ; Hueso J. L. ; Sebastián V. ; Balas F. ; Arruebo M. ; Santamaría J. Catal. Today 2014, 227 (179)
50 Uchisawa J. ; Tango T. ; Murakami T. ; Nakagawa H. ; Hara S. ; Nanba T. ; Obuchi A. React. Kinet. Mech. Cat 2013, 108 (2), 359.
51 Orlov A. ; Klinowski J. Chemosphere 2009, 74 (2), 344.
52 El Hassan N. ; Aouad S. ; Casale S. ; El Zakhem H. ; El Nakat H. Comptes Rendus Chimie 2014, 17 (9), 913.
53 Qayyum E. ; Castillo V. A. ; Warrington K. ; Barakat M. A. ; Kuhn J. N. Catal. Commun 2012, 28, 128.
54 Chen C. S. ; Lai Y. T. ; Chen T. C. ; Chen C. H. ; Lee J. F. ; Hsu C. W. ; Kao H. M. Nanoscale 2014, 6 (21), 12644.
55 Czaplinska J. ; Sobczak I. ; Ziolek M. J. Phys. Chem. C 2014, 118 (24), 12796.
56 Kaminski P. ; Ziolek M. J. Catal 2014, 312, 249.
57 Yang X. ; Jia Z. G. ; Ji S. F. ; Zhang H. ; Li X. T. Environ. Protec. Chem. Ind 2011, 31 (4), 369.
57 杨肖; 贾志刚; 季生福; 张欢; 李旭涛. 化工环保, 2011, 31 (4), 369.
58 Qu Z. P. ; Shen S. ; Chen D. ; Wang Y. J. Mol. Catal. A 2012, 356, 171.
59 Kharlamova T. ; Mamontov G. ; Salaev M. ; Zaikovskii V. ; Popova G. ; Sobolev V. ; Knyazev A. ; Vodyankina O. Appl. Catal. A 2013, 467, 519.
60 Qu Z. P. ; Chen D. ; Sun Y. H. ; Wang Y. Appl. Catal. A 2014, 487, 100.
61 Chen D. ; Qu Z. P. ; Shen S. J. ; Li X. Y. ; Shi Y. ; Wang Y. ; Fu Q. ; Wu J. J. Catal Today 2011, 175 (1), 338.
62 Chen D. ; Qu Z. P. ; Zhang W. W. ; Li X. Y. ; Zhao Q. D. ; Shi Y. Colloids Surf. A 2011, 379 (1-3), 136.
63 Chen D. ; Qu Z. P. ; Sun Y. H. ; Gao K. ; Wang Y. Appl. Catal. B 2013, 142- 143, 838.
64 Wang C. ; Bai H. Ind. Eng. Chem. Res 2011, 50 (7), 3842.
65 Wang C. Y. ; Bai H. Catal. Today 2011, 174 (1), 70.
66 Lin L. Y. ; Bai H. Appl. Catal. B 2014, (66), 148- 149, 366.
67 Lin L. Y. ; Wang C. ; Bai H. Chem. Eng. J 2015, 264, 835.
68 He C. ; Li J. J. ; Cheng J. ; Li L. D. ; Li P. ; Hao Z. P. ; Xu Z. P. Ind. Eng. Chem. Res 2009, 48, 6930.
69 He C. ; Li J. ; Li P. ; Cheng J. ; Hao Z. P. ; Xu Z. P. Appl. Catal. B 2010, 96 (3-4), 466.
70 He C. ; Li P. ; Cheng J. ; Wang H. ; Li J. ; Li Q. ; Hao Z. P. Appl. Catal. A 2010, 382 (2), 167.
71 He C. ; Li P. ; Cheng J. ; Li J. ; Hao Z. P. Environ. Prog. Sustain 2010, 29 (4), 435.
72 Yang J. S. ; Jung W. Y. ; Lee G. D. ; Park S. S. ; Hong S. S. Top. Catal 2010, 53 (7-10), 543.
73 Liu G. ; Yang K. ; Li J. ; Tang W. ; Xu J. ; Liu H. ; Yue R. ; Chen Y. J. Phys. Chem. C 2014, 118 (39), 22719.
74 Yan F. W. ; Zhang S. F. ; Guo C. Y. ; Li F. B. ; Yan F. ; Yuan G. Q. Catal. Commun 2009, 10 (13), 1689.
75 Uchisawa J. ; Kosuge K. ; Nanba T. ; Masukawa S. ; Obuchi A. Catal. Lett 2009, 133 (3-4), 314.
76 He C. ; Li P. ; Wang H. ; Cheng J. ; Zhang X. ; Wang Y. ; Hao Z. P. J. Hazard. Mater 2010, 181 (1-3), 996.
77 Wang F. ; Li J. ; Yuan J. ; Sun X. ; Shen J. ; Han W. ; Wang L. Catal. Commun 2011, 12 (15), 1415.
78 He C. ; Li J. ; Zhang X. ; Yin L. ; Chen J. ; Gao S. Chem. Eng. J 2012, 180, 46.
79 He C. ; Zhang F. ; Yue L. ; Shang X. ; Chen J. ; Hao Z. P. Appl. Catal. B 2012, 111- 112, 46..
80 He C. ; Zhang X. ; Gao S. ; Chen J. ; Hao Z. P. J. Ind. Eng. Chem 2012, 18 (5), 1598.
81 Qu Z. P. ; Bu Y. B. ; Qin Y. ; Wang Y. ; Fu Q. Appl. Catal. B 2013, 132- 133, 353..
82 Lai Y. T. ; Chen T. C. ; Lan Y. K. ; Chen B. S. ; You J. H. ; Yang C. M. ; Lai N. C. ; Wu J. H. ; Chen C. S. ACS Catal 2014, 4 (11), 3824.
83 Zhao F. Z. ; Zeng P. H. ; Zhang G. H. ; Ji S. F. ; Li C. Y. ; Chin J. Catal 2010, 31 (3), 335.
83 赵福真; 曾鹏晖; 张广宏; 季生福; 李成岳. 催化学报, 2010, 31 (3), 335.
84 Li Z. F. ; Ji S. F. ; Zhao F. Z. ; Li C. Y. J. Beijing Univer. Chem. Tech. (Natural Sci.) 2010, 37 (2), 1.
84 李振峰; 季生福; 福真; 李成岳. 北京化工大学学报(自然科学版), 2010, 37 (2), 1.
85 Popova M. ; Szegedi Á. ; Cherkezova-Zheleva Z. ; Dimitrova A. ; Mitov I. Appl. Catal. A 2010, 381 (1-2), 26.
86 Chuang K. H. ; Liu Z. S. ; Chang Y. H. ; Lu C. Y. ; Wey M. Y. React. Kinet. Mech. Catal 2010, 99, 409.
87 Zhang G. H. J. Ningxia Teachers Univ. (Natural Sci.) 2011, 32 (3), 43.
87 张广宏. 宁夏师范学院学报(自然科学), 2011, 32 (3), 43.
88 Yuan J. F. ; Li J. S. ; Wang F. ; Sun X. Y. ; Shen J. Y. ; Han W. Q. ; Wang L. J. Chin. J. Catal 2011, 32 (6), 1069.
88 袁金芳; 李建生; 王放; 孙秀云; 沈锦优; 韩卫清; 王连军. 催化学报, 2011, 32 (6), 1069.
89 Qu Z. P. ; Bu Y. B. ; Qin Y. ; Wang Y. ; Fu Q. Chem. Eng. J 2012, 209, 163.
90 Poyraz A. S. ; Biswas S. ; Genuino H. C. ; Dharmarathna S. ; Kuo C. H. ; Suib S. L. ChemCatChem 2013, 5 (4), 920.
91 Tsoncheva T. ; Issa G. ; Blasco T. ; Dimitrov M. ; Popova M. ; Hernández S. ; Kovacheva D. ; Atanasova G. ; Nieto J. M. L. Appl. Catal. A 2013, 453, 1.
92 Nanba T. ; Chino T. ; Masukawa S. ; Uchisawa J. ; Obuchi A. Bull. Chem. Soc. Jpn 2013, 86 (4), 534.
93 Zhang Y. J. ; Deng J. G. ; Zhang L. ; Dai H. X. Chin. Sci. Bull 2014, 59 (26), 2595.
93 张玉娟; 邓积光; 张磊; 戴洪兴. 科学通报, 2014, 59 (26), 2595.
94 Zhang Y. ; Deng J. ; Zhang L. ; Dai H. Chin. Sci. Bull 2014, 59 (31), 3993.
95 Deng J. G. ; Zhang L. ; Dai H. X. ; Au C. T. Appl. Catal. A 2009, 352, 43.
96 Zhang Z. K. ; Liang Y. W. ; Ren Q. R. ; Liu H. Y. ; Chen Y. F. Chin. J. Catal 2011, 32 (2), 250.
96 张泽凯; 梁一微; 任倩茹; 刘华彦; 陈银飞. 催化学报, 2011, 32 (2), 250.
97 Ren Q. R. ; Zhang Z. K. ; Xu B. ; Chen Y. F. J. Fuel Chem. Tech 2012, 40 (9), 1142.
97 任倩茹; 张泽凯; 徐彪; 陈银飞. 燃料化学学报, 2012, 40 (9), 1142.
98 Wang Y. Q. ; Xiao L. ; Zhao D. F. ; Zhao C. C. ; Liu F. ; Sun Q. M. J. China Univ. Petroleum 2014, 38 (6), 167.
98 王永强; 肖丽; 赵东风; 赵朝成; 刘芳; 孙启猛. 中国石油大学学报(自然科学版), 2014, 38 (6), 167.
99 Xu L. ; Wang J. ; Wu J. L. ; Huang B. C. ; Ye D. Q. Chin. J. Environ. Eng 2010, 4 (2), 387.
99 徐丽; 王静; 吴军良; 黄碧纯; 叶代启. 环境工程学报, 2010, 4 (2), 387.
100 Park J. I. ; Lee J. K. ; Miyawaki J. ; Yoon S. H. ; Mochida I. J. Ind. Eng. Chem 2011, 17 (2), 271.
101 Zhao G. ; Zhao Z. ; Wu J. ; Ye D. J. Spectr 2014, 2014, 1.
102 Lu J. Precious Metals 2002, 23 (2), 53.
102 卢军. 贵金属, 2002, 23 (2), 53.
103 Papaefthimiou P. ; Ioannides T. ; Verykios X. E. Appl. Catal. B 1997, 13, 175.
104 Pérez H. ; Navarro P. ; Delgado J. J. ; Montes M. Appl. Catal. A 2011, 400 (1-2), 238.
105 He C. ; Yue L. ; Zhang X. ; Li P. ; Dou B. ; Ma C. ; Hao Z. P. Asia-Pacific J. Chem. Eng 2012, 7 (5), 705.
106 Pérez H. ; Navarro P. ; Torres G. ; Sanz O. ; Montes M. Catal. Today 2013, 212, 149.
107 Tsoncheva T. ; Issa G. ; López Nieto J. M. ; Blasco T. ; Concepcion P. ; Dimitrov M. ; Atanasova G. ; Kovacheva D. Microporous Mesoporous Mat 2013, 180, 156.
108 Tsoncheva T. ; Issa G. ; Blasco T. ; Concepcion P. ; Dimitrov M. ; Hernandez S. ; Kovacheva D. ; Atanasova G. ; Lopez Nieto J. M. J. Colloid Interface Sci 2013, 404, 155.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[3] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[4] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[5] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[6] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[7] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[8] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[9] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[10] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[11] Xiao-Qin ZHOU,Hui ZHANG,Ze ZHANG,Xin CHEN,Chuan-Hong JIN. Characterization of Heterostructural Palladium Deposition on Spherical Gold Nanoparticles by In situ Liquid Cell Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 458-463.
[12] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[13] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.
[14] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[15] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.