Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (10): 2016-2022    DOI: 10.3866/PKU.WHXB201508102
PHYSICAL CHEMISTRY OF MATERIALS     
γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution
Hui-Ling. MA1,2,Long. ZHANG1,You-Wei. ZHANG3,Di. LIU1,Chao. SUN1,Xin-Miao. ZENG1,*(),Mao-Lin. ZHAI2,*()
1 Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, Beijing 100015, P. R. China
2 Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
3 Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, P. R. China
Download: HTML     PDF(2260KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene, a one-atom-thick, two-dimensional (2D) sheet of carbon packed in a honeycomb lattice, has striking electronic, mechanical, and thermal properties. Reduced graphene oxide (RGO) and amine-modified reduced graphene oxide (RGON) were obtained by γ-ray induced reduction of a graphene oxide (GO) suspension in purified water and in a p-phenylene diamine (PPD) aqueous solution, respectively. The structures and elemental compositions of GO, RGO, and RGON were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, the electrical conductivities and hydrophilic properties were conducted with four-probe resistivity meter and contact angle measurements, respectively. The results reveal that GO can be well reduced by γ-ray irradiation in either purified water or PPD aqueous solution. Furthermore, the electrical conductivities of obtained RGO and RGON are enhanced. The hydrophilicity of RGON is higher than that of RGO because the amine groups of PPD are modified on the surface of graphene nanosheets during the γ-ray induced reduction. However, the conduction of electron on the surface of graphene can be inhibited by the modified amine groups. Therefore, the electrical conductivity of RGO is higher than that of RGON.



Key wordsGraphene oxide      Graphene      γ-Ray irradiation      Radiation-induced reduction      Electrical c onductivity      Hydrophilic property     
Received: 11 May 2015      Published: 10 August 2015
MSC2000:  O644  
  TL13  
Fund:  the National Natural Science Foundation of China(11375019, 11405168, 11505011);China Postdoctoral ScienceFoundation(2014M550653)
Corresponding Authors: Xin-Miao. ZENG,Mao-Lin. ZHAI     E-mail: sherry_0282_cn@sina.com;mlzhai@pku.edu.cn
Cite this article:

Hui-Ling. MA,Long. ZHANG,You-Wei. ZHANG,Di. LIU,Chao. SUN,Xin-Miao. ZENG,Mao-Lin. ZHAI. γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution. Acta Physico-Chimica Sinca, 2015, 31(10): 2016-2022.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201508102     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I10/2016

Fig 1 Photographs of GO in H2O (left) and PPD (right) solution after γ-ray irradiation
Fig 2 Fourier transform infrared (FTIR) spectra of GO, RGO, and RGON
Fig 3 (a) Survey XPS spectra of GO, RGO, and RGON; high resolution C 1s XPS spectra of (b) GO, (c) RGO, and (d) RGON
Sample Atomic fraction/% C/O atom ratio
C O N
GO 67.03 32.19 0.78 2.08
RGO 88.97 9.67 1.36 9.20
RGON 89.86 4.74 5.40 18.96
quantified by XPS
Table 1 Elemental compositions of GO, RGO, and RGON
Fig 4 Raman spectra of GO, RGO, and RGON ⅠDⅡG: the integrated intensity ratio of the D and G bands
Fig 5 X-ray diffraction (XRD) patterns of GO, RGO, and RGON
Fig 6 Thermogravimetric analysis (TGA) curves of GO, RGO, and RGON
Sample Water contact angle/(°) Electrical conductivity/(S·m–1)
GO 62.4 2.27 × 10–7
RGO 82.0 1.70
RGON 11.7 0.04
Table 2 Water contact angles and electrical conductivities of GO, RGO, and RGON
1 Yin P. T. ; Shah S. ; Chhowalla M. ; Lee K. B. Chemical Reviews 2015, 115 (7), 2483.
2 Zhang Q. Q. ; Li R. ; Zhang M. M. ; Gou X. L. Acta Phys. -Chim. Sin 2014, 30, 476.
2 张晴晴; 李容; 张萌萌; 苟兴龙. 物理化学学报, 2014, 30, 476.
3 Yang Y. W. ; Feng G. ; Lu Z. H. ; Hu N. ; Zhang F. ; Chen X. S. Acta Phys. -Chim. Sin 2014, 30, 1180.
3 杨宇雯; 冯刚; 卢章辉; 胡娜; 张飞; 陈祥树. 物理化学学报, 2014, 30, 1180.
4 Xu J. ; Yang D. Z. ; Liao X. Z. ; He Y. S. ; Ma Z. F. Acta Phys. -Chim. Sin 2015, 31, 913.
4 许婧; 杨德志; 廖小珍; 何雨石; 马紫峰. 物理化学学报, 2015, 31, 913.
5 Mi C. T. ; Liu G. P. ; Wang J. J. ; Guo X. L. ; Wu S. X. ; Yu J. Acta Phys. -Chim. Sin 2014, 30, 1230.
5 米传同; 刘国平; 王家佳; 郭新立; 吴三械; 于金. 物理化学学报, 2014, 30, 1230.
6 Wu H. ; Drzal L. T. Carbon 2012, 50 (3), 1135.
7 Georgakilas V. ; Perman J. A. ; Tucek J. ; Zboril R. Chemical Reviews 2015, 115 (11), 4744.
8 Wang C. F. ; Chen Y. J. ; Zhuo K. L. ; Wang J. J. Chemical Communications 2013, 49 (32), 3336.
9 Yuan F. Y. ; Zhang H. B. ; Li X. F. ; Ma H. L. ; Li X. Z. ; Yu Z. Z. Carbon 2014, 68, 653.
10 Stankovich S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T. ; Ruoff R. S. Carbon 2007, 45 (7), 1558.
11 Si Y. ; Samulski E. T. Nano Letters 2008, 8 (6), 1679.
12 Wang G. ; Yang J. ; Park J. ; Gou X. ; Wang B. ; Liu H. ; Yao J. Journal of Physical Chemistry C 2008, 112 (22), 8192.
13 Tang X. Z. ; Cao Z. W. ; Zhang H. B. ; Liu J. ; Yu Z. Z. Chemical Communications 2011, 47 (11), 3084.
14 Nguyen S. T. ; Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Ruoff R. S. Nature 2006, 442 (7100), 282.
15 Fan X. B. ; Peng W. C. ; Li Y. ; Li X. Y. ; Wang S. L. ; Zhang G. L. ; Zhang F. B. Advanced Materials 2008, 20 (23), 4490.
16 Zhang J. L. ; Yang H. J. ; Shen G. X. ; Cheng P. ; Zhang J. Y. ; Guo S. W. Chemical Communications 2010, 46 (7), 1112.
17 Zhou D. ; Cheng Q. Y. ; Han B. H. Carbon 2011, 49 (12), 3920.
18 Bashar M. M. ; Siddiquee M. A. ; Khan M. A. Carbohydrate Polymers 2015, 120, 92.
19 Chen L. ; Xu Z. W. ; Li J. L. ; Li Y. L. ; Shan M. J. ; Wang C. H. ; Wang Z. ; Guo Q. W. ; Liu L. S. ; Chen G. W. ; Qian X. M. Journal of Materials Chemistry 2012, 22 (27), 13460.
20 Zhang B. W. ; Zhang Y. J. ; Peng C. ; Yu M. ; Li L. F. ; Deng B. ; Hu P. F. ; Fan C. H. ; Li J. Y. ; Huang Q. Nanoscale 2012, 4 (5), 1742.
21 Zhang Y. W. ; Ma H. L. ; Zhang Q. L. ; Peng J. ; Li J. Q. ; Zhai M. L. ; Yu Z. Z. Journal of Materials Chemistry 2012, 22 (26), 13064.
22 Liu J. ; Jin J. M. Ieee Transactions on Antennas and Propagation 2003, 51 (6), 1157.
23 Chen C. M. ; Zhang Q. ; Yang M. G. ; Huang C. H. ; Yang Y. G. ; Wang M. Z. Carbon 2012, 50 (10), 3572.
24 Chen C. M. ; Zhang Q. ; Zhao X. C. ; Zhang B. S. ; Kong Q. Q. ; Yang M. G. ; Yang Q. H. ; Wang M. Z. ; Yang Y. G. ; Schlogl R. ; Su D. S. Journal of Materials Chemistry 2012, 22 (28), 14076.
25 Chen X. Q. ; Xu Z. H. ; Li X. D. ; Shaibat M. A. ; Ishii Y. ; Ruoff R. S. Carbon 2007, 45 (2), 416.
26 Ma H. L. ; Zhang H. B. ; Hu Q. H. ; Li W. J. ; Jiang Z. G. ; Yu Z. Z. ; Dasari A. ACS Applied Materials & Interfaces 2012, 4 (4), 1948.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[8] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[9] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[10] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[11] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[12] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[13] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.
[14] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.
[15] Xu-Chun WANG,Jin-Ze LI,Guang-Yong LI,Jin WANG,Xue-Tong ZHANG,Qiang GUO. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2141-2152.