Please wait a minute...
Acta Phys. Chim. Sin.  2015, Vol. 31 Issue (10): 1956-1962    DOI: 10.3866/PKU.WHXB201508212
Effect of Activated Carbon Pore Structure on the Adsorption of Pb(II) from Aqueous Solution
YANG Jie-Yang, HUANG Zhang-Gen, HAN Xiao-Jin, JING Wen, ZENG Ze-Quan
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
Download:   PDF(4495KB) Export: BibTeX | EndNote (RIS)      


Pb(II) adsorption by three activated carbons (ACs) with similar surface chemistry but different pore distributions was investigated by isothermal adsorption experiments. The ACs were characterized by scanning electron microscopy (SEM) and N2 adsorption at 77 K, while the micropore and mesopore size distributions were obtained from the density functional theory (DFT) and the Barrett-Joyner-Halenda (BJH) method, respectively. The specific surface area and total volume were ranked in order of AC1, AC2, and AC3. The AC2 sample had a uniform distribution of open pores on the surface and the highest saturating adsorption capacity, while the capacity of AC3, which had more aggregated pores, was similar to that of AC1, which had a concentrated distribution of open pores on the surface. A correlation analysis of pore structure and adsorption capacity indicated that pores with diameters in the range of 0.4-0.6 nm were favorable for Pb(II) adsorption, whereas pores with diameters in the ranges of 10.5-20.6 nm, 20.6-55.6 nm, and 5.2-10.5 nm had an adverse effect.

Key wordsActivated carbon      Pore structure      Adsorption      Pb(II)     
Received: 02 July 2015      Published: 21 August 2015
MSC2000:  O647  
Corresponding Authors: HUANG Zhang-Gen     E-mail:
Cite this article:

YANG Jie-Yang, HUANG Zhang-Gen, HAN Xiao-Jin, JING Wen, ZENG Ze-Quan. Effect of Activated Carbon Pore Structure on the Adsorption of Pb(II) from Aqueous Solution. Acta Phys. Chim. Sin., 2015, 31(10): 1956-1962.

URL:     OR

(1) Qin, H. F.; Liu, T. F.; Zhou, J. B. Chinese Journal of Environmental Engineering 2011, 5 (2), 306. [秦恒飞, 刘婷逢, 周建斌. 环境工程学报, 2011, 5 (2), 306.]
(2) Netzer, A.; Hughes, D. E. Water Res. 1984, 18 (8), 927. doi: 10.1016/0043-1354(84)90241-0
(3) Riverautrilla, J.; Ferrogarcia, M. A.; Mingorance, M. D.; Bautistatoledo, I. J. Chem. Technol. Biotechnol. 1986, 36 (2), 47.
(4) Ferrogarcia, M. A.; Riverautrilla, J.; Bautistatoledo, I.; Mingorance, M. D. Carbon 1990, 28 (4), 545. doi: 10.1016/0008-6223(90)90051-Y
(5) Cheng, J. G.; Subramanian, K. S.; Chakrabarti, C. L.; Guo, R. D.; Ma, X. J.; Lu, Y. J.; Pickering, W. F. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering 1993, A28 (1), 51.
(6) Li, K. L.; Wang, X. H. Bioresour. Technol. 2009, 100 (11), 2810. doi: 10.1016/j.biortech.2008.12.032
(7) Sakthi, V.; Andal, N. M.; Rengaraj, S.; Sillanpaa, M. Desalin. Water Treat. 2010, 16 (1-3), 262. doi: 10.5004/dwt.2010.1074
(8) Jiang, L. Q.; Zhang, R. J.; Deng, H. P. Environmental Science & Technology 2014, 37 (12), 178. [蒋立群, 张瑞金, 邓惠萍. 环境科学与技术, 2014, 37 (12), 178.]
(9) Fan, M. X.; Tong, S. T.; Chen, D. D. Chinese Journal of Environmental Engineering 2014, 8 (12), 5197. [范明霞, 童仕唐, 陈东东. 环境工程学报, 2014, 8 (12), 5197.]
(10) Cechinel, M. A. P.; de Souza, S.; de Souza, A. A. U. J. Cleaner Prod. 2014, 65, 342. doi: 10.1016/j.jclepro.2013.08.020
(11) Machida, M.; Fotoohi, B.; Amamo, Y.; Mercier, L. Appl. Surf. Sci. 2012, 258 (19), 7389. doi: 10.1016/j.apsusc.2012.04.042
(12) Mu, G. N.; Yang, C. F. Acta Phys. -Chim. Sin. 1995, 11 (2), 157. [木冠南, 杨春芬. 物理化学学报, 1995, 11 (2), 157.] doi: 10.3866/PKU.WHXB19950212
(13) Boudrahem, F.; Soualah, A.; Aissani-Benissad, F. J. Chem. Eng. Data 2011, 56 (5), 1946. doi: 10.1021/je1009569
(14) Momcilovic, M.; Purenovic, M.; Bojic, A.; Zarubica, A.; Randelovic, M. Desalination 2011, 276 (1-3), 53. doi: 10.1016/j.desal.2011.03.013
(15) Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M. K. Spectrochim. Acta Part A 2015, 135, 479.
(16) Lopez-Ramon, M. V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. Carbon 1999, 37 (8), 1216.
(17) Zhao, Z. G. The Principle and Application of Adsorption; Chemical Industry Press: Beijing, 2005; pp 91-193. [赵振国. 吸附作用应用原理. 北京: 化学工业出版社, 2005: 91-193.]
(18) Konndou, S.; Ishikawa, T.; Abe, I. Adsorption Science; Chemical Industry Press: Beijing, 2006; pp 115-137; translated by Li, G. X. [近藤精一, 石川达雄, 安部郁夫. 吸附科学. 李国希, 译. 北京: 化学工业出版社, 2006: 115-137.]
(19) Garcia-Bordeje, E.; Lazaro, M. J.; Moliner, R.; Alvarez, P. M.; Gomez-Serrano, V.; Fierro, J. L. G. Carbon 2006, 44 (3), 410.
(20) Liu, L. H.; Gu, M.; Xian, X. F. Chinese Journal of Environmental Engineering 2012, 6 (4), 1301. [刘立恒, 辜敏, 鲜学福. 环境工程学报, 2012, 6 (4), 1301.]
(21) Zhang, Z.; Xu, M.; Wang, H.; Li, Z. Chem. Eng. J. 2010, 160 (2), 574.
(22) Tseng, H. H.; Wey, M. Y. Chemosphere 2006, 62 (5), 764.
(23) Wu, J. Study on the Activated Carbon Produced with Sewage Sludge. Master Dissertation. Shandong University, Jinan, 2006. [吴娟. 城市污水处理厂污泥制备活性炭的研究[D]. 济南: 山东大学, 2006.]
(24) Karatepe, N.; Orbak, ?.; Yavuz, R.; Özyu?uran, A. Fuel 2008, 87 (15-16), 3214.
(25) Macías-García, A.; Díaz-Díez, M. A.; Cuerda-Correa, E. M.; Olivares-Marín, M.; Gañan-Gómez, J. Appl. Surf. Sci. 2006, 252 (17), 5973.
(26) Wu, M. B.; Zheng, J. T.; Qiu, J. S. Chem. Online 2011, 74 (7), 622. [吴明铂, 郑经堂, 邱介山. 化学通报, 2011, 74 (7), 622.]
(27) Mohammadi, S. Z.; Karimi, M. A.; Afzali, D.; Mansouri, F. Desalination 2010, 262 (1-3), 88.
(28) Ahmad, F.; Daud, W.; Ahmad, M. A.; Radzi, R. Chem. Eng. Res. Des. 2013, 91 (6), 1033.
(29) Weng, S. F. Fourier Transform Infrared Spectrometry; Chemical Industry Press: Beijing, 2010; pp 291-358. [翁诗甫. 傅里叶变换红外光谱分析. 北京: 化学工业出版社, 2010: 291-358.]
(30) Li, L. Q.; Song, J. F.; Yao, X. L.; Huang, G. J.; Liu, Z.; Tang, L. J. Cent. South Univ. 2012, 19 (12), 3532.
(31) Li, X. Q.; Lan, L. J. Jiangsu Agric. Sci. 2013, 41 (6), 288. [李晓强, 兰丽娟. 江苏农业科学, 2013, 41 (6), 288.]
(32) Tang, J.; Zeng, Q.; Chen, Z. D.; Huang, X. Q. Acta Phys. -Chim. Sin. 2012, 28 (5), 1269. [汤儆, 曾峤, 陈振东, 黄向前. 物理化学学报, 2012, 28 (5), 1269.] doi:10.3866/PKU.WHXB201202242
(33) Chen, Y. J.; Hu, Z. H.; Wang, X. J.; Zhao, G. H.; Liu, Y. F.; Liu, W. Acta Phys. -Chim.Sin. 2008, 24 (9), 1592. [陈玉娟, 胡中华, 王晓静, 赵国华, 刘亚菲, 刘巍. 物理化学学报, 2008, 24 (9), 1592.] doi: 10.3866/PKU.WHXB20080911
(34) Chen, Q. J.; Wang, Z.; Long, D. H.; Liu, X. J.; Zhan, L.; Liang, X. Y.; Qiao, W. M.; Ling, L. C. Ind. Eng. Chem. Res. 2010, 49 (7), 3153.
(35) Gun'ko, V. M.; Palijczuk, D.; Leboda, R.; Skubiszewska-Zieba, J.; Smigielski, R.; Zietek, S. J. Colloid Interface Sci. 2006, 294 (1), 62.

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[6] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[7] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[8] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[9] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[10] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. Chim. Sin., 2017, 33(2): 370-376.
[11] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[12] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[13] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[14] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[15] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.