Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (10): 1956-1962    DOI: 10.3866/PKU.WHXB201508212
CATALYSIS AND SURFACE SCIENCE     
Effect of Activated Carbon Pore Structure on the Adsorption of Pb(II) from Aqueous Solution
Jie-Yang. YANG,Zhang-Gen. HUANG*(),Xiao-Jin. HAN,Wen. JING,Ze-Quan. ZENG
Download: HTML     PDF(4495KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Pb(II) adsorption by three activated carbons (ACs) with similar surface chemistry but different pore distributions was investigated by isothermal adsorption experiments. The ACs were characterized by scanning electron microscopy (SEM) and N2 adsorption at 77 K, while the micropore and mesopore size distributions were obtained from the density functional theory (DFT) and the Barrett-Joyner-Halenda (BJH) method, respectively. The specific surface area and total volume were ranked in order of AC1, AC2, and AC3. The AC2 sample had a uniform distribution of open pores on the surface and the highest saturating adsorption capacity, while the capacity of AC3, which had more aggregated pores, was similar to that of AC1, which had a concentrated distribution of open pores on the surface. A correlation analysis of pore structure and adsorption capacity indicated that pores with diameters in the range of 0.4-0.6 nm were favorable for Pb(II) adsorption, whereas pores with diameters in the ranges of 10.5-20.6 nm, 20.6-55.6 nm, and 5.2-10.5 nm had an adverse effect.



Key wordsActivated carbon      Pore structure      Adsorption      Pb(II)     
Received: 02 July 2015      Published: 21 August 2015
MSC2000:  O647  
Corresponding Authors: Zhang-Gen. HUANG     E-mail: zghuang@sxicc.ac.cn
Cite this article:

Jie-Yang. YANG,Zhang-Gen. HUANG,Xiao-Jin. HAN,Wen. JING,Ze-Quan. ZENG. Effect of Activated Carbon Pore Structure on the Adsorption of Pb(II) from Aqueous Solution. Acta Phys. -Chim. Sin., 2015, 31(10): 1956-1962.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201508212     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I10/1956

Fig 1 Adsorption isotherms of Pb(II) on the three activated carbons (ACs) AC1: granular coal-based activated carbon, AC2: granular coconut shell derived activated carbon, AC3: columnar coal-based activated carbon; Ce: equilibrium concentration of Pb(II); qe: equilibrium adsorption capacity
Fig 2 Isotherm model fitting for adsorption of Pb(II) on the three ACs (a) Langmuir isotherm plots; (b) Freundlich isotherm plots
  Langmuir     Freundlich
      fitted equation q0/(mg·g-1) b R2   fitted equation n K R2
AC1 Ce/qe = 0.0302 Ce + 0.0743 33.113 0.406 0.995   lgqe = 0.1889lgCe + 1.2080 5.294 16.144 0.977
AC2 Ce/qe = 0.0213 Ce + 0.0621 46.948 0.343 0.991   lgqe = 0.2912lgCe + 1.2038 3.434 15.988 0.961
AC3 Ce/qe = 0.0303 Ce + 0.0496 33.003 0.611 0.991   lgqe = 0.2047lgCe + 1.1812 4.885 15.177 0.972
q0: saturating adsorption capacity; R[2]: correlation coefficient; b: Langmuir adsorption constant; n, K: Freundlich adsorption constants
Table 1 Model fitting parameters of the three ACs
Fig 3 Fourier transform infrared (FTIR) spectra of the three ACs
Fig 4 Scanning electron microscopy (SEM) images of the three ACs (a) before adsorption of Pb(II); (b) after adsorption of Pb(II)
Sample SBET   Vtotal   Vmic (Vtotal/Vmic)/% D/nm
(m2·g-1) (cm3·g-1) (cm3·g-1)
AC1 1005.2245 0.5161 0.2485 48.15 2.0535
AC2 847.4684 0.3689 0.2897 78.53 1.7413
AC3 340.0403 0.1981 0.1044 52.70 2.3308
SBET: BET specific surface area; Vtotal: total pore volume; Vmic: micropore volume; Vtotal/Vmic: ratio of micropore volume to total pore volume; D: average pore diameter
Table 2 Specific surface areas and pore structure parameters of the three ACs
Fig 5 Micropore size distribution of the three ACs
Fig 6 Mesopore size distribution of the three ACs
Pore Pore diameter range/nm Pore volume/(cm3·g-1)
AC1 AC2 AC3
micropore 0.4-0.6 0.1081 0.1527 0.0770
0.6-1.0 0.0729 0.0735 0.0202
1.0-1.4 0.0655 0.0382 0.0057
1.4-1.7 0.0480 0.0173 0.0040
1.7-2.0 0.0263 0.0073 0.0015
mesopore 2.0-2.5 0.0410 0.0074 0.0039
2.5-3.3 0.0354 0.0111 0.0088
3.3-5.2 0.0580 0.0202 0.0228
5.2-10.0 0.0309 0.0041 0.0191
10.0-20.0 0.0142 0.0023 0.0143
20.0-55.6 0.0082 0.0025 0.0104
Table 3 Pore volumes of the three ACs
Fig 7 Curves of R2 versus initial concentration of Pb(II) (C0) R2: correlation coefficients for the adsorption capacity of the ACs at different C0 values and pore volumes with different pore diameter intervals; pore diameter range in figure a: ?■? 0.4-0.6 nm, ?●? 0.6-1.0 nm, ?▲? 1.0-1.4 nm, ?▼? 1.4-1.7 nm, ??? 1.7-2.0 nm; pore diameter range in figure b: ?■? 20.6-55.6 nm, ?●? 10.5-20.6 nm, ?▲? 5.2-10.5 nm, ?▼? 3.3-5.2 nm, ??? 2.5-3.3 nm, ??? 2.0-2.5 nm
1 Qin H. F. ; Liu T. F. ; Zhou J. B. Chinese Journal of Environmental Engineering 2011, 5 (2), 306.
1 秦恒飞; 刘婷逢; 周建斌. 环境工程学报, 2011, 5 (2), 306.
2 Netzer A. ; Hughes D. E. Water Res 1984, 18 (8), 927.
3 Riverautrilla J. ; Ferrogarcia M. A. ; Mingorance M. D. ; Bautistatoledo I. J. Chem. Technol. Biotechnol 1986, 36 (2), 47.
4 Ferrogarcia M. A. ; Riverautrilla J. ; Bautistatoledo I. ; Mingorance M. D. Carbon 1990, 28 (4), 545.
5 Cheng J. G. ; Subramanian K. S. ; Chakrabarti C. L. ; Guo R. D. ; Ma X. J. ; Lu Y. J. ; Pickering W. F. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering 1993, A28 (1), 51.
6 Li K. L. ; Wang X. H. Bioresour. Technol 2009, 100 (11), 2810.
7 Sakthi V. ; Andal N. M. ; Rengaraj S. ; Sillanpaa M. Desalin. Water Treat 2010, 16 (1-3), 262.
8 Jiang L. Q. ; Zhang R. J. ; Deng H. P. Environmental Science & Technolog 2014, 37 (12), 178.
8 蒋立群; 张瑞金; 邓惠萍. 环境科学与技术, 2014, 37 (12), 178.
9 Fan M. X. ; Tong S. T. ; Chen D. D. Chinese Journal of Environmental Engineering 2014, 8 (12), 5197.
9 范明霞; 童仕唐; 陈东东. 环境工程学报, 2014, 8 (12), 5197.
10 Cechinel M. A. P. ; de Souza S. ; de Souza A. A. U. J.Cleaner Prod 2014, 65, 342.
11 Machida M. ; Fotoohi B. ; Amamo Y. ; Mercier L. Appl. Surf. Sci 2012, 258 (19), 7389.
12 Mu G. N. ; Yang C. F. Acta Phys. -Chim. Sin 1995, 11 (2), 157.
12 木冠南; 杨春芬. 物理化学学报, 1995, 11 (2), 157.
13 Boudrahem F. ; Soualah A. ; Aissani-Benissad F. J. Chem. Eng. Data 2011, 56 (5), 1946.
14 Momcilovic M. ; Purenovic M. ; Bojic A. ; Zarubica A. ; Randelovic M. Desalination 2011, 276 (1-3), 53.
15 Ghaedi M. ; Mazaheri H. ; Khodadoust S. ; Hajati S. ; Purkait M. K. Spectrochim. Acta Part 2015, 135,, 479.
16 Lopez-Ramon M. V. ; Stoeckli F. ; Moreno-Castilla C. ; Carrasco-Marin F. Carbon 1999,, 37 (8), 1216.
17 Zhao, Z. G. The Principle and Application of Adsorption; Chemical Industry Press: Beijing, 2005; pp 91-193.
17 赵振国.吸附作用应用原理.北京:化学工业出版社, 2005: 91-193.
18 Konndou, S.; Ishikawa, T.; Abe, I. Adsorption Science; Chemical Industry Press: Beijing, 2006; pp 115-137; translated by Li, G. X.
18 近藤精一,石川达雄,安部郁夫.吸附科学.李国希,译.北京:化学工业出版社, 2006: 115-137.
19 Garcia-Bordeje E. ; Lazaro M. J. ; Moliner R. ; Alvarez P. M. ; Gomez-Serrano V. ; Fierro J. L. G. Carbon 2006, 44 (3), 410.
20 Liu L. H. ; Gu M. ; Xian X. F. Chinese Journal of Environmental Engineering 2012, 6 (4), 1301.
20 刘立恒; 辜敏; 鲜学福. 环境工程学报, 2012, 6 (4), 1301.
21 Zhang Z. ; Xu M. ; Wang H. ; Li Z. Chem. Eng. J 2010,, 160 (2), 574.
22 Tseng H. H. ; Wey M. Y. Chemosphere 2006,, 62 (5), 764.
23 Wu, J. Study on the Activated Carbon Produced with Sewage Sludge. Master Dissertation. Shandong University, Jinan, 2006.
23 吴娟.城市污水处理厂污泥制备活性炭的研究[D].济南:山东大学, 2006.
24 Karatepe N. ; Orbak İ. ; Yavuz R. ; Özyuğuran A. Fuel 2008, 87 (15-16), 3214.
25 Macías-García A. ; Díaz-Díez M. A. ; Cuerda-Correa E. M. ; Olivares-Marín M. ; Gañan-Gómez J. Appl. Surf. Sci 2006, 252 (17), 5973.
26 Wu M. B. ; Zheng J. T. ; Qiu J. S. Chem. Online 2011, 74 (7), 622.
26 吴明铂; 郑经堂; 邱介山. 化学通报, 2011, 74 (7), 622.
27 Mohammadi S. Z. ; Karimi M. A. ; Afzali D. ; Mansouri F. Desalination 2010, 262 (1-3), 88.
28 Ahmad F. ; Daud W. ; Ahmad M. A. ; Radzi R. Chem. Eng. Res. Des 2013, 91 (6), 1033.
29 Weng, S. F. Fourier Transform Infrared Spectrometry; Chemical Industry Press: Beijing, 2010; pp 291-358.
29 翁诗甫.傅里叶变换红外光谱分析.北京:化学工业出版社, 2010: 291-358.
30 Li L. Q. ; Song J. F. ; Yao X. L. ; Huang G. J. ; Liu Z. ; Tang L. J. Cent. South Univ 2012, 19 (12), 3532.
31 Li X. Q. ; Lan L. J. Jiangsu Agric. Sci 2013, 41 (6), 288.
31 李晓强; 兰丽娟. 江苏农业科学, 2013, 41 (6), 288.
32 Tang J. ; Zeng Q. ; Chen Z. D. ; Huang X. Q. Acta Phys. -Chim. Sin 2012, 28 (5), 1269.
32 汤儆; 曾峤; 陈振东; 黄向前. 物理化学学报, 2012, 28 (5), 1269.
33 Chen Y. J. ; Hu Z. H. ; Wang X. J. ; Zhao G. H. ; Liu Y. F. ; Liu W. Acta Phys. -Chim.Sin 2008, 24 (9), 1592.
33 陈玉娟; 胡中华; 王晓静; 赵国华; 刘亚菲; 刘巍. 物理化学学报, 2008, 24 (9), 1592.
34 Chen Q. J. ; Wang Z. ; Long D. H. ; Liu X. J. ; Zhan L. ; Liang X. Y. ; Qiao W. M. ; Ling L. C. Ind. Eng. Chem. Res 2010, 49 (7), 3153.
35 Gun'ko V. M. ; Palijczuk D. ; Leboda R. ; Skubiszewska-Zieba J. ; Smigielski R. ; Zietek S. J. Colloid Interface Sci 2006, 294 (1), 62.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[3] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[4] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[5] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[6] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[7] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[8] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[9] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[10] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[11] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[12] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[13] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.
[14] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[15] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.