Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (10): 1939-1948    DOI: 10.3866/PKU.WHXB201508251
CATALYSIS AND SURFACE SCIENCE     
Hydrothermal Synthesis of Ag3PO4 Polyhedrons with Oriented {110} Facets and Visible-Light-Driven Photocatalytic Activity
Chun-Mei. LIU,Guo-Ying. ZHANG*(),Xin. ZHANG,Yan-Yan. XU,Dong-Zhao. GAO
Download: HTML     PDF(14845KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Ag3PO4 polyhedrons were synthesized by a facile hydrothermal route using polyethylene glycol-6000 (PEG-6000). The effects of hydrothermal temperature, reaction time, and PEG-6000 dosage on the morphologies and structures of the products were systematically investigated. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), and photoluminescence (PL) spectra. The hydrothermal temperature and the PEG dosage are key factors in the production of Ag3PO4 polyhedrons with oriented {110} facets. The Ag3PO4 polyhedrons evolve via Ostwald ripening, and exhibit superior visible-light photocatalytic degradation of Rhodamine B (RhB) relative to Ag3PO4 samples without oriented {110} facets and Ag3PO4 nanoparticles prepared by anion-exchange. The reaction rate constant of the Ag3PO4 polyhedrons was 8.3 times that of the Ag3PO4 nanoparticles. Total organic carbon (TOC) analysis and cycling experiments revealed that the polyhedrons have better mineralization efficiency and exhibit good circulation runs. Holes (h+) and hydroxyl radicals (·OH) are confirmed to be the dominant active species in the presence of radical scavengers and in N2-saturated solution. Given the redox potential of the active species and the band structure of Ag3PO4 polyhedron, the separation and migration mechanism of photogenerated electron-hole (e--h+) pairs at the photocatalytic interface was proposed.



Key wordsSilver phosphate      PEG-6000      Hydrothermal route      Photocatalysis      Active species      Separation of photogenerated carriers     
Received: 06 July 2015      Published: 25 August 2015
MSC2000:  O643  
  O644  
Fund:  the National Natural Science Foundation of China(21303122);Program for Innovative Research Team inUniversity of Tianjin, China(TD12-5038)
Corresponding Authors: Guo-Ying. ZHANG     E-mail: hxxyzgy@mail.tjnu.edu.cn
Cite this article:

Chun-Mei. LIU,Guo-Ying. ZHANG,Xin. ZHANG,Yan-Yan. XU,Dong-Zhao. GAO. Hydrothermal Synthesis of Ag3PO4 Polyhedrons with Oriented {110} Facets and Visible-Light-Driven Photocatalytic Activity. Acta Physico-Chimica Sinca, 2015, 31(10): 1939-1948.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201508251     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I10/1939

Fig 1 XRD patterns of the Ag3PO4 samples prepared by ion-exchange method and hydrothermal reaction (a) room temperature (RT); dosage of PEG-6000/g: (b) 0.000, (c) 0.010, (d) 0.015, (e) 0.020, (f) 0.030
Fig 2 SEM images of Ag3PO4 samples with different dosages of PEG-6000 (a) 0.000 g, (b) 0.010 g, (c) 0.015 g, (d) 0.020 g, (e) 0.030 g
Fig 3 SEM images and the corresponding XRD patterns of Ag3PO4 samples prepared at different hydrothermal temperatures (a) 80 ℃, (b) 100 ℃, (c) 120 ℃, (d) 140 ℃, (e) 160 ℃
Fig 4 SEM images of Ag3PO4 samples treated at 120 ℃ with different hydrothermal time (a) 0 min, (b) 40 min, (c) 2 h, (d) 6 h, (e) 12 h, (f) 16 h
Fig 5 UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL) (λex = 350 nm) spectra of Ag3PO4 photocalalyst The inset in the upper right is (αhυ)1/2 versus hυ curve.
Fig 6 (a) Degradation of RhB over series of Ag3PO4 samples, (b) the corresponding first-order dynamic plots and rate constant k; photocatalytic degradation processes of RhB over Ag3PO4 hydrothermal samples obtained (c) without and (d) with 0.015 g PEG-6000
Fig 7 Comparison of (a) TOC analysis and (b) circulation runs for RhB over Ag3PO4 samples obtained without and with 0.015 g PEG-6000
Fig 8 Effects of different scavengers on the degradation of RhB in the presence of Ag3PO4 photocatalysts EDTA: ethylene diamine tetra-acetic acid; IPA: isopropyl alcohol
Fig 9 Schematic illustration of the charge separation and immigration on the surface of Ag3PO4 photocatalyst
1 Fujishima A. ; Honda K. Nature 1972, 238, 37.
2 Mohamed S. H. ; El-Hagary M. ; Althoyaib S. Eur. Phys. J.-Appl. Phys 2012, 57, 20301.
3 Wang X. X. ; Xu H. L. ; Shen W. ; Ruhlmann L. ; Qin F. ; Sorgues S. ; Colbeau-Justin C. Acta Phys. -Chim. Sin 2013, 29, 1837.
3 王晓夏; 徐华龙; 沈伟; RuhlmannL.; 秦枫; SorguesS.; Colbeau-JustinC.. 物理化学学报, 2013, 29, 1837.
4 Ge M. ; Tan M. M. ; Cui G. H. Acta Phys. -Chim. Sin 2014, 30, 2107.
4 葛明; 谭勉勉; 崔广华. 物理化学学报, 2014, 30, 2107.
5 Nakamura K. J. ; Ide Y. ; Ogawa M. Mater. Lett 2011, 65, 24.
6 Tian G. H. ; Fu H. G. ; Jing L. Q. ; Xin B. F. ; Pan K. J. Phys. Chem. C 2008, 112, 3083.
7 Chen X. B. ; Shen S. H. ; Guo L. J. ; Mao S. S. Chem. Rev 2010, 110, 6503.
8 Cheng H. F. ; Huang B. B. ; Dai Y. ; Qin X. Y. ; Zhang X. Y. Langmuir 2010, 26, 6618.
9 Wang D. F. ; Kako T. ; Ye J. H. J. Am. Chem. Soc 2008, 130, 2724.
10 Yuhas B. D. ; Smeigh A. L. ; Douvalis A. P. ; Wasielewski M. R. ; Kanatzidis M. G. J.Am. Chem. Soc 2012, 134, 10353.
11 Yi Z. G. ; Ye J. H. ; Kikugawa N. ; Kako T. ; Ouyang S. X. ; Stuart-Williams H. Nat. Mater 2010, 9, 559.
12 Ma X. G. ; Lu B. ; Li D. ; Shi R. ; Pan C. S. ; Zhu Y. F. J.Phys. Chem. C 2011, 115, 4680.
13 Dinh C. T. ; Nguyen T. D. ; Kleitz F. ; Do T. O. Chem. Commun 2011, 47, 7797.
14 Yu H. C. ; Dong Q. S. ; Jiao Z. B. ; Wang T. ; Ma J. T. ; Lu G. X. ; Bi Y. P. J.Mater. Chem. A 2014, 2, 1668.
15 Hua X. ; Jin Y. J. ; Wang K. ; Li N. ; Liu H. Q. ; Chen M. D. ; Paul S. S. ; Zhang Y. ; Zhao X. D. ; Teng F. Catal. Commun 2014, 52, 49.
16 Bi Y. P. ; Hu H. Y. ; Ouyang S. X. ; Jiao Z. B. ; Lu G. X. ; Ye J. H. J.Mater. Chem 2012, 22, 14847.
17 Bi Y. P. ; Hu H. Y. ; Jiao Z. B. ; Yu H. C. ; Lu G. X. ; Ye J. H. Phys. Chem. Chem. Phys 2012, 14, 14486.
18 Hu H. Y. ; Jiao Z. B. ; Yu H. C. ; Lu G. X. ; Ye J. H. ; Bi Y. P. J.Mater. Chem. A 2013, 1, 2387.
19 Bi Y. P. ; Ouyang S. X. ; Umezawa N. ; Cao J. Y. ; Ye J. H. J.Am. Chem. Soc 2011, 133, 6490.
20 Dong P. Y. ; Wang Y. H. ; Li H. H. ; Li H. ; Ma X. L. ; Han L. L. J.Mater. Chem. A 2013, 1, 4651.
21 Wang J. ; Teng F. ; Chen M. D. ; Xu J. J. ; Song Y. Q. ; Zhou X. L. CrystEngComm 2013, 15, 39.
22 Yin Y. D. ; Alivisatos A. P. Nature 2005, 437, 664.
23 Hu L. M. ; Lin C. G. ; Wang L. ; Yuan S. L. Acta Phys. -Chim. Sin 2014, 30, 2149.
23 胡立梅; 蔺存国; 王利; 苑世领. 物理化学学报, 2014, 30, 2149.
24 Mullin J. W. ; Yokota M. ; Mullin J. W. J. Cryst. Growth 1997, 182, 86.
25 Hua X. ; Jin Y. J. ; Wang K. ; Li N. ; Liu H. Q. ; Chen M. D. ; Paul S. S. ; Zhang Y. ; Zhao X. D. ; Teng F. Catal. Commun 2014, 52, 49.
26 Cui G. W. ; Wang W. L. ; Ma M. Y. ; Zhang M. ; Xia X. Y. ; Han F. Y. ; Shi X. Y. ; Zhao Y. Q. ; Dong Y. B. ; Tang B. Chem. Commun 2013, 49, 6415.
27 Zhang C. ; Zhu Y. F. Chem. Mater 2005, 17, 3537.
28 Wu T. X. ; Liu G. M. ; Zhao J. C. ; Hiodaka H. ; Serpone N. J. Phys. Chem. B 1998, 102, 5845.
29 Smith W. ; Mao S. ; Lu G. H. ; Catlett A. ; Chen J. H. ; Zhao Y. P. Chem. Phys. Lett 2010, 485, 171.
30 Indra A. ; Menezes P. W. ; Schwarze M. ; Driess M. New J. Chem 2014, 38, 1942.
31 Cheng H. F. ; Huang B. B. ; Dai Y. ; Qin X. Y. ; Zhang X. Y. Langmuir 2010, 26, 6618.
32 Ma S. S. ; Li R. ; Lv C. P. ; Xu W. ; Gou X. L. J. Hazard. Mater 2011, 192, 730.
33 Ye L. Q. ; Chen J. N. ; Tian L. H. ; Liu J. Y. ; Peng T. Y. ; Deng K. J. ; Zan L. Appl. Catal. B 2013, 130-131, 1.
34 Liu W. ; Wang M. L. ; Xu C. X. ; Chen S. F. ; Fu X. L. Mater. Res. Bull 2013, 48, 106.
[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.
[7] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[8] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[9] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2069-2076.
[10] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.
[11] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.
[12] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1519-1526.
[13] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 728-736.
[14] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 737-744.
[15] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 551-557.