Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (10): 1932-1938    DOI: 10.3866/PKU.WHXB201509064
CATALYSIS AND SURFACE SCIENCE     
Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance
Chang-Lin. YU1,*(),Long-Fu. WEI1,2,Jia-De. LI1,Hong-Bo. HE1,Wen. FANG1,Wan-Qin. ZHOU1
1 School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
2 State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
Download: HTML     PDF(7728KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene oxide (GO) was fabricated from graphite powder by Hummers oxidation method and then, under ultrasonic irradiation, a series of GO/Ag3PO4 composite photocatalysts (4% (w, mass fraction) GO/Ag3PO4, 8% GO/Ag3PO4, 16% GO/Ag3PO4, 32% GO/Ag3PO4) were synthesized by a facile liquid deposition process. The products were characterized by N2-physical adsorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, Fourier transform infrared (FT-IR) spectroscopg, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of GO content on the photocatalytic activity of Ag3PO4 was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results show that GO can be easily dispersed into Ag3PO4, producing a well-connected GO/Ag3PO4 composite. Coupling of GO largely enhanced the surface area of the catalyst and the adsorption of MO. At the optimal GO content (16%), the degradation rate of MO over GO/Ag3PO4 was 83% after 120 min of light irradiation, exhibiting 7.5 times higher activity than that of pure Ag3PO4. The increase in photocatalytic activity and stability can be mainly attributed to the coupling of GO, which increased the surface area and suppressed the recombination rate of electron-hole (e-/h+) pairs and generated greater numbers of active free radicals.



Key wordsGraphene oxide      Ag3PO4      Coupling      Photocatalytic activity      Methyl orange      Active free radical     
Received: 25 June 2015      Published: 06 September 2015
MSC2000:  O643  
  TB321  
Fund:  the National Natural Science Foundation of China(21067004, 21263005, 21567008);Young Science and Technology Project of Jiangxi Provincial Natural Science Foundation, China(20133BAB21003);Landing Project of Science and Technology of Colleges andUniversities in Jiangxi Province, China(KJLD14046);Young Scientist Training Project of Jiangxi Province, China(20122BCB23015);YuanHang Gong Cheng Project of Jiangxi Province, China
Corresponding Authors: Chang-Lin. YU     E-mail: yuchanglinjx@163.com
Cite this article:

Chang-Lin. YU,Long-Fu. WEI,Jia-De. LI,Hong-Bo. HE,Wen. FANG,Wan-Qin. ZHOU. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance. Acta Phys. -Chim. Sin., 2015, 31(10): 1932-1938.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201509064     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I10/1932

Fig 1 X-ray diffraction (XRD) patterns of the as-prepared samples
Sample Specific surface area/(m2?g–1)
GO 31.40
Ag3PO4   0.20
4% GO/Ag3PO4   2.74
8% GO/Ag3PO4   5.24
16% GO/Ag3PO4 14.58
32% GO/Ag3PO4 20.84
Table 1 Specific surface areas of the samples
Fig 2 Scanning electron microscopy (SEM) images of the samples (a) GO, (b) Ag3PO4, (c) 16% GO/Ag3PO4
Fig 3 Transmission electron microscopy (TEM) images of the samples (a) GO, (b) Ag3PO4, (c) 16% GO/Ag3PO4
Fig 4 Raman spectra of the samples
Fig 5 UV-Vis diffuse reflectance spectroscopies (UV-Vis DRS) of the samples
Fig 6 Photocatalytic activity comparison of the Ag3PO4 and GO/Ag3PO4 under visible light irradiation
Sample Degradation rate/%
lst run 2nd run 3rd run 4th run 5th run
Ag3PO4 15   5
16% GO/Ag3PO4 85 76 63 51 37
Table 2 Photocatalytic stability comparison of Ag3PO4 and 16% GO/Ag3PO4
Fig 7 Photoluminescence (PL) spectra of the photocatalyst-coumarin (0.001 mol?L–1) aqueous solution after visible light irradiation of 2.5 h
Fig 8 Proposed mechanism of the enhanced photocatalytic activity in the GO/Ag3PO4 composite
1 Zhou W. Q. ; Yu C. L. ; Fan Q. Z. ; Wei L. F. ; Chen J. C. ; Yu J. C. Chin. J.Catal 2013, 34, 1250.
1 周晚琴; 余长林; 樊启哲; 魏龙福; 陈建钗; YuJ. C.. 催化学报, 2013, 34, 1250.
2 Jin R. R. ; You J. G. ; Zhang Q. ; Liu D. ; Hu S. Z. ; Gui J. Z. Acta Phys. -Chim. Sin 2014, 30, 1706.
2 金瑞瑞; 游继光; 张倩; 刘丹; 胡绍争; 桂建舟. 物理化学学报, 2014, 30, 1706.
3 Yu C. L. ; Cao F. F. ; Shu Q. ; Bao Y. L. ; Xie Z. P. ; Yu J. C. ; Yang K. Acta Phys.-Chim. Sin 2012, 28, 647.
3 余长林; 操芳芳; 舒庆; 包玉龙; 谢志鹏; YuJ. C.; 杨凯. 物理化学学报, 2012, 28, 647.
4 Yu C. L. ; Yang K. ; Yu J. C. ; Peng P. ; Cao F. F. ; Li X. ; Zhou X. C. Acta Phys. -Chim. Sin 2011, 27, 505.
4 余长林; 杨凯; 余济美; 彭鹏; 操芳芳; 李鑫; 周晓春. 物理化学学报, 2011, 27, 505.
5 Yu G. H. ; Xu L. L. ; Wang P. ; Wang X. F. ; Yu J. G. Appl. Catal. B 2014, 144, 75.
6 Yi Z. G. ; Ye J. H. ; Kikugawan N. ; Kako T. ; Ouyang S. X. ; Stuart-Williams H. ; Yang H. ; Cao J. Y. ; Luo W. J. ; Li Z. S. ; Withers R. L. Nat. Mater 2010, 9, 559.
7 Ge M. ; Tan M. M. ; Cui G. H. Acta Phys. -Chim. Sin 2014, 30, 2107.
7 葛明; 谭勉勉; 崔广华. 物理化学学报, 2014, 30, 2107.
8 Wang X. F. ; Li S. F. ; Yu H. G. ; Yu J. G. ; Liu S. W. Chem. -Eur. J 2011, 17, 7777.
9 Dai G. P. ; Yu J. G. ; Liu G. J. Phys. Chem. C 2012, 116, 15519.
10 Ouyang S. X. ; Ye J. H. J. Am. Chem. Soc 2011, 133, 7757.
11 Tsuji I. ; Kato H. ; Kobayashi H. ; Kudo A. J. Am. Chem. Soc 2004, 126, 13406.
12 Wang D. ; Kako T. ; Ye J. J. Phys. Chem. C 2009, 113, 3785.
13 Bi Y. P. ; Ouyang S. X. ; Cao J. Y. ; Ye J. H. Phys. Chem. Chem. Phys 2011, 13, 10071.
14 Yu C. L. ; Zhou W. Q. ; Yu J. C. ; Liu H. ; Wei L. F. Chin. J.Catal 2014, 35, 1609.
14 余长林; 周晚琴; 余济美; 刘鸿; 魏龙福. 催化学报, 2014, 35, 1609.
15 Yu C. L. ; Li G. ; Kumar S. ; Yang K. ; Jin R. C. Adv. Mater 2014, 26, 892.
16 Liu S. Q. ; Wang S. ; Dai G. P. ; Lu J. ; Liu K. Acta Phys. -Chim. Sin 2014, 30, 2121.
16 刘素芹; 王松; 戴高鹏; 鲁俊; 刘科. 物理化学学报, 2014, 30, 2121.
17 Liu J. B. ; Yi Y. ; Shi P. H. ; Wang Q. ; Li D. X. ; Hussain A. ; Yang M. Acta Phys. -Chim. Sin 2014, 30, 1720.
17 李洁冰; 伊玉; 时鹏辉; 王倩; 李登新; HussainA.; 杨明. 物理化学学报, 2014, 30, 1720.
18 Zhang Q. Q. ; Li R. ; Zhang M. M. ; Gou X. L. Acta Phys. -Chim. Sin 2014, 30, 476.
18 张晴晴; 李容; 张萌萌; 苟兴龙. 物理化学学报, 2014, 30, 476.
19 Liu J. X. ; Wang Y. F. ; Wang Y. W. ; Fan C. M. Acta Phys. -Chim. Sin 2014, 30, 729.
19 刘建新; 王韵芳; 王雅文; 樊彩梅. 物理化学学报, 2014, 30, 729.
20 Geng J. Y. ; Zhu X. S. ; Du Y. K. Chin. J.Inorg. Chem 2012, 28, 357.
20 耿静漪; 朱新生; 杜玉扣. 无机化学学报, 2012, 28, 357.
21 Wang C. ; Cao M. H. ; Wang P. F. ; Ao Y. H. ; Hou J. ; Qian J. Appl. Catal. A 2014, 473, 83.
22 Hu J. ; Li H. S. ; Wu Q. ; Zhao Y. ; Jiao Q. Z. Chem. Eng. J 2015, 263, 144.
23 Gao Y. ; Hu M. ; Mi B. X. J. Membr. Sci 2014, 455, 349.
24 He G. L. ; Chen M. J. ; Liu Y. Q. ; Li X. ; Liu Y. J. ; Xu Y. H. Appl. Surf. Sci 2015, 351, 474.
25 Chen Y. L. ; Zhang C. E. ; Deng C. ; Fei P. ; Zhong M. ; Su B. T. Chin. Chem. Lett 2013, 24, 518.
26 Liu L. ; Liu J. C. ; Sun D. D. Catal. Sci. Technol 2012, 2, 2525.
27 Chen G. D. ; Sun M. ; Wei Q. ; Zhang Y. F. ; Zhu B. C. ; Du B. J. Hazard. Mater 2013, 244/245, 86.
28 Long M. ; Cong Y. ; Li X. K. ; Cui Z. W. ; Dong Z. J. ; Yuan G. M. Acta Phys. -Chim. Sin 2013, 29, 1344.
28 龙梅; 丛野; 李轩科; 崔正威; 董志军; 袁观明. 物理化学学报, 2013, 29, 1344.
29 Zhao H. M. ; Su F. ; Fan X. F. ; Yu H. T. ; Wu D. ; Quan X. Chin. J.Catal 2012, 33, 777.
29 赵慧敏; 苏芳; 范新飞; 于洪涛; 吴丹; 全燮. 催化学报, 2012, 33, 777.
30 Kudin K. N. ; Ozbas B. ; Schniepp H. C. ; Prud'homme R. K. ; Aksay I. A. ; Car R. Nano. Lett 2008, 8, 36.
31 Yu C. L. ; Wei L. F. ; Zhou W. Q. ; Chen J. C. ; Fan Q. Z. ; Liu H. Appl. Surf. Sci 2014, 319, 312.
[1] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[2] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[3] Yeliang ZHAO,Bing WANG. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1312-1320.
[4] Lu-Hua LAN,Hong TAO,Mei-Ling LI,Dong-Yu GAO,Jian-Hua ZOU,Miao XU,Lei WANG,Jun-Biao PENG. Progress of Light Extraction Technology for Organic Light-Emitting Diodes[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1548-1572.
[5] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1297-1309.
[6] Hong-Mei QU,Ze-Peng CHONG,Xu CHEN,Yi-Can MEN,Hai-Jiao SHEN. Synthesis and Properties of a Series of Dinaphthosiloles[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1253-1260.
[7] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[8] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[9] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[10] Xiang-Dong ZENG,Xiao-Yu ZHAO,Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2035-2041.
[11] Ya-Chao CHANG,Ming JIA,Wei-Wei FAN,Yao-Peng LI,Hong LIU,Mao-Zhao XIE. Decoupling Methodology: An Effective Way for the Development of Reduced and Skeletal Mechanisms[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2209-2215.
[12] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[13] Sheng-Jun ZHAO,Wei ZHANG,Hui-Ning DENG,Wei LIU. Layer-by-Layer Assembly of Graphene Oxide and Polyelectrolyte Composite Membranes for Monovalent Cation Separation[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 723-727.
[14] Rong. CHEN,Wo-Hua. ZHOU,Zi-Wen. WU,Xuan. XU,Zhi-Guang. XU. Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1683-1689.
[15] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1383-1390.