Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (10): 1991-1996    DOI: 10.3866/PKU.WHXB201509073
PHYSICAL CHEMISTRY OF MATERIALS     
Influence of Soldium Lignosulfonate with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes
Huang-Qing. YE1,Yong-Hong. DENG1,Yan. YAN2,Mei-Jie. ZHANG2,Yong. QIAN1,Xue-Qing. QIU1,*()
1 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
2 Cnano (Zhenjiang) Technology Limited, Zhenjiang 212000, Jiangsu Province, P. R. China
Download: HTML     PDF(5273KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The influence of sodium lignosulfonate (SLS) fractions with different molecular weights on the adsorption characteristics of multi-walled carbon nanotubes (MWCNTs) and their dispersion performance was studied using gel permeation chromatography (GPC), UV-Vis spectroscopy, elementary analysis, Fourier transform infrared (FT-IR) spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The results indicate that SLS with higher molecular weight disperse MWCNTs better and that dispersed MWCNTs exhibit lower specific resistance and increased conductivity. It is supposed that SLS fraction with higher molecular weight has more aromatic rings, thus accounting for stronger π-π interactions with MWCNTs and increased adsorption amount.



Key wordsLignosulfonate      Molecular weight      Carbon nanotube      Adsorption      Dispersion     
Received: 02 July 2015      Published: 07 September 2015
MSC2000:  O648  
Fund:  The project was supported by the National Natural Science Foundation of China(21436004);The project was supported by the National Natural Science Foundation of China(21374032)
Corresponding Authors: Xue-Qing. QIU     E-mail: xueqingqiu66@163.com
Cite this article:

Huang-Qing. YE,Yong-Hong. DENG,Yan. YAN,Mei-Jie. ZHANG,Yong. QIAN,Xue-Qing. QIU. Influence of Soldium Lignosulfonate with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes. Acta Phys. -Chim. Sin., 2015, 31(10): 1991-1996.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201509073     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I10/1991

Fig 1 Weight-averaged molecular weight (Mw) distribution of diferent SLS fractions
Sample Molecular weight cut-off Mn/Da Mw/Da Mw/Mn
F0 >5000 4982.4 18983 3.81
F1 5000-10000 1243.9 4129.6 3.32
F2 10000-50000 3034.1 7645.8 2.52
F3 >50000 9260.5 25559 2.76
Table 1 Molecular weight and polydispersity of different SLS fractions
Sample F0 F1 F2 F3
w(sulfur)/% 5.758 9.665 6.200 4.926
Table 2 Elemental sulfur content of different SLS fractions
Fig 2 UV-Vis standard curves of different SLS fractions Insert shows the UV-Vis spectra of F3 at different SLS concentrations. x is the concentration of SLS, y is the absorbance value at 280 nm, R is the linear correlation coefficient.
Fig 3 SEM images of MWCNTs dispersed by different SLS fractions (a) F0; (b) F1; (c) F2; (d) F3
Fig 4 Photographs (a) and UV-Vis spectra (b) of MWCNTs suspensions with different SLS fractions, diluted from ball-milling suspensions and stored for 3 months Insert shows UV-Vis spectra of MWCNTs without SLS, the concentration of MWCNTs is 0.18 mg·mL–1.
Fig 5 Specific resistance of MWCNTs and F-MWCNTs prepared with different SLS fractions after tableting
Fig 6 FT-IR spectra of different SLS (a) and F-MWCNTs prepared with different SLS fractions (b)
Sample F0-MWCNTs F1-MWCNTs F2-MWCNTs F3-MWCNTs
Δv/cm–1 1.1 0.3 0.6 1.5
Table 3 Shift value of wavenumber of benzene skeleton vibration in different F-MWCNTs
Fig 7 Zeta potential of MWCNTs and diluted MWCNTs ball-milling suspension with different SLS fractions
Sample w(N)/% w(C)/% w(H)/% w(S)/% Adsorption capacity/%
F0-MWCNTs 0 78.77 0.67 1.463 0.297
F1-MWCNTs 0.04 83.09 0.844 1.058 0.148
F2-MWCNTs 0.02 57.52 1.918 1.467 0.152
F3-MWCNTs 0 45.49 1.805 2.772 0.447
Table 4 Elemental content in F-MWCNTs and Adsorption capacity of different SLS fractions on MWCNTs
1 Iijima S. Nature 1991, 354 (6348), 56.
2 Harris, P. J.; Harris, P. J. F. Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century; Cambridge University Press: Cambridge, 2001.
3 Bandyopadhyaya R. ; Nativ-Roth E. ; Regev O. ; Yerushalmi-Rozen R. Nano Letters 2002, 2 (1), 25.
4 Jung D. H. ; Ko Y. K. ; Jung H. T. Materials Science and Engineering: C 2004, 24 (1), 117.
5 Ausman K. D. ; Piner R. ; Lourie O. ; Ruoff R. S. ; Korobov M. The Journal of Physical Chemistry B 2000, 104 (38), 8911.
6 Star A. ; Liu Y. ; Grant K. ; Ridvan L. ; Stoddart J. F. ; Steuerman D. W. ; Diehl M. R. ; Boukai A. ; Heath J. R. Macromolecules 2003, 36 (3), 553.
7 Vaisman L. ; Wagner H. D. ; Marom G. Advances in Colloid and Interface Science 2006, 128, 37.
8 Liu Y. ; Gao L. ; Sun J. The Journal of Physical Chemistry C 2007, 111 (3), 1223.
9 Lou H. ; Lai H. ; Wang M. ; Pang Y. ; Yang D. ; Qiu X. ; Wang B. ; Zhang H. Industrial & Engineering Chemistry Research 2013, 52 (46), 16101.
10 Zhou M. ; Kong Q. ; Pan B. ; Qiu X. ; Yang D. ; Lou H. Fuel 2010, 89 (3), 716.
11 Li Z. ; Pang Y. ; Ge Y. ; Qiu X. The Journal of Physical Chemistry C 2011, 115 (50), 24865.
12 Qian Y. ; Deng Y. ; Qiu X. ; Li H. ; Yang D. Green Chemistry 2014, 16 (4), 2156.
13 Deng Y. H. ; Liu Y. F. ; Zhang W. J. ; Qiu X. Q. Acta Phys. -Chim. Sin 2015, 31, 505.
13 邓永红; 刘友法; 张伟健; 邱学青. 物理化学学报, 2015, 31, 505.
14 Deng, Y.; Liu, Y.; Qian, Y.; Zhang, W.; Qiu, X. ACS Sustainable Chemistry & Engineering 2015, to be published
15 Liu Y. ; Gao L. ; Zheng S. ; Wang Y. ; Sun J. ; Kajiura H. ; Li Y. ; Noda K. Nanotechnology 2007, 18 (36), 365702.
16 Dong J. Q. ; Shen Q. Journal of Polymer Science Part B: Polymer Physics 2009, 47 (20), 2036.
17 Milczarek G. Journal of Electroanalytical Chemistry 2010, 638 (1), 178.
18 Milczarek G. ; Nowicki M. Mater. Res. Bull 2013, 48 (10), 4032.
19 Teng N.Y. ; Dallmeyer I. ; Kadla J. F. Industrial & Engineering Chemistry Research 2013, 52 (19), 6311.
[1] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] Xueting LIN,Mingli FU,Hui HE,Junliang WU,Limin CHEN,Daiqi YE,Yun HU,Yifan WANG,William WEN. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 719-730.
[3] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[4] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[5] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[6] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[7] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[8] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[9] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[10] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[11] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[12] Fan CHEN,Zhong-Yue WANG,Yan-Yan ZHANG,Ke-Han YU,Li-Xing WENG,Wei WEI. Synthesis of Poly(acrylic acid)-Functionalized La1-xEuxF3 Nanocrystals with High Photoluminescence for Cellular Imaging[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1446-1452.
[13] Zhou-Sheng MO,Yu-Cai QIN,Xiao-Tong ZHANG,Lin-Hai DUAN,Li-Juan SONG. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[14] Yu HE,Yi-Bo WANG. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1149-1159.
[15] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.