Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (11): 2117-2123    DOI: 10.3866/PKU.WHXB201509181
ELECTROCHEMISTRY AND NEW ENERGY     
One-Step Synthesis of Reduced Graphene Oxide supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation
Hai-Li. GAO1,2,*(),Xiao-Long. LI1,Wei. HE1,Rui-Ting. GUO1,Bo. CHAI1
1 Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
2 Henan Provincial Key Laboratory of Surface Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
Download: HTML     PDF(8907KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this study, graphite oxide was prepared from natural graphite powder using a modified Hummers method. Well-dispersed Pt nanoparticles were synthesized on reduced graphene oxide (RGO) via a simple one-step chemical reduction method in ethylene glycol (EG) by simultaneous reduction of graphene oxide (GO) and chloroplatinic acid. The microstructure, composition, and morphology of the synthesized materials were characterized with Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is shown that the GO was reduced to RGO, and the Pt nanoparticles with an average particle size of 2.3 nm were well dispersed on the surface of RGO. The catalytic performance of the catalysts for methanol oxidation was investigated by cyclic voltammetry and amperometric method, which indicated that Pt/RGO catalyst had higher electrocatalytic activity and stability for the oxidation of methanol than the Pt/C and Pt/CNT catalysts. The If/Ib of Pt/RGO reached 1.3, which was 2.2 and 1.9 times as high as those of Pt/C and Pt/CNT catalysts, respectively, revealing that Pt/RGO had high poisoning tolerance to the COad intermediate species produced in the methanol oxidation reaction.



Key wordsPt nanoparticle      Graphene      Chemical reduction      Methanol oxidation      Poisoning tolerance     
Received: 08 May 2015      Published: 18 September 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(U1404201);National Training Programs of Innovation andEntrepreneurship for Undergraduates(201310462099);Foundation for Young Core Teacher by Zhengzhou University of Light Industry, China(2013XGGJS007);Research Foundation of Education Bureau of Henan Province, China(13A530362);Doctoral Foundation of ZhengzhouUniversity of Light Industry, China(2011BSJJ020)
Corresponding Authors: Hai-Li. GAO     E-mail: gaohaili@zzuli.edu.cn
Cite this article:

Hai-Li. GAO,Xiao-Long. LI,Wei. HE,Rui-Ting. GUO,Bo. CHAI. One-Step Synthesis of Reduced Graphene Oxide supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation. Acta Physico-Chimica Sinca, 2015, 31(11): 2117-2123.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201509181     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I11/2117

Fig 1 (a) XRD patterns of graphite, GO, and RGO; (b) XRD patterns of Pt/RGO, Pt/C, Pt/CNT, and RGO
Fig 2 FTIR spectra of graphite, GO, and Pt/RGO
Fig 3 TEM images (a, b, c, e, g) and high resolution TEM (HRTEM) images (d, f, h) of GO (a), Pt/RGO (b, c, d), Pt/C (e, f), and Pt/CNT (g, h), and the corresponding particle size distribution of Pt/RGO (i), Pt/C (j), Pt/CNT (k)
Fig 4 Cyclic voltammograms of Pt/RGO, Pt/CNT, and Pt/C catalysts in 0.5 mol •L-1 H2SO4 solution
Fig 5 Cyclic voltammograms of Pt/RGO, Pt/CNT, and Pt/C catalysts in 0.5 mol• L-1 H2SO4+0.5 •mol L-1 CH3OH solution
Fig 6 Chronoamperometry measurements of methanol oxidation on the Pt/RGO, Pt/CNT, and Pt/C catalysts in 0.5 mol•L–1 H2SO4 + 0.5 mol•L–1 CH3OH solution at 0.6 V
1 Zhao H. B. ; Li L. ; Yang J. ; Zhang Y. M. Electrochem. Commun 2008, 10 (10), 1527.
2 Hamel C. ; Garbarino S. B. ; Irissou E. R. ; Bichat M. P. ; Guay D. J. Phys. Chem. C 2010, 114 (44), 18931.
3 Lee S. H. ; Kakati N. ; Jee S. H. ; Maiti J. ; Yoon Y. S. Mater. Lett 2011, 65 (21-22), 3281.
4 Navaee A. ; Salimi A. ; Soltanian S. ; Servati P. J. Power Sources 2015, 277 (3), 268.
5 Zhou X. ; Gan Y. ; Du J. ; Tian D. ; Zhang R. ; Yang C. ; Dai Z. J. Power Sources 2013, 232 (6), 310.
6 Cai Z. X. ; Liu C. C. ; Wu G. H. ; Chen X. M. ; Chen X. Electrochim. Acta 2014, 127 (5), 377.
7 Du S. ; Lu Y. ; Steinberger-Wilckens R. Carbon 2014, 79 (11), 346.
8 Gao H. ; Liao S. ; Zeng J. ; Xie Y. J. Power Sources 2011, 196 (1), 54.
9 Liu A. ; Yuan M. ; Zhao M. ; Lu C. ; Zhao T. ; Li P. ; Tang W. J. Alloy. Compd 2014, 586 (2), 99.
10 Zhang Y. ; Chang G. ; Shu H. ; Oyama M. ; Liu X. ; He Y. J. Power Sources 2014 2014, 262 (9), 279.
11 Xu C. ; Hou J. ; Pang X. ; Li X. ; Zhu M. ; Tang B. Int. J. Hydrog. Energy 2012, 37 (14), 10489.
12 Liang Q. ; Zhang L. ; Cai M. ; Li Y. ; Jiang K. ; Zhang X. ; Shen P. K. Electrochim. Acta 2013, 111 (11), 275.
13 Lu J. ; Zhou Y. ; Tian X. ; Xu X. ; Zhu H. ; Zhang S. ; Yuan T. Appl. Surf. Sci 2014, 317 (10), 284.
14 Liu C. S. ; Liu X. C. ; Wang G. C. ; Liang R. P. ; Qiu J. D. J. Electroanal. Chem 2014, 728 (8), 41.
15 Liu H. ; Song C. ; Zhang L. ; Zhang J. ; Wang H. ; Wilkinson D. P. J. Power Sources 2006, 155 (2), 95.
16 Miko?ajczuk A. ; Borodzinski A. ; Kedzierzawski P. ; Stobinski L. ; Mierzwa B. ; Dziura R. Appl. Surf. Sci 2011, 257 (19), 8211.
17 Kakaei K. ; Zhiani M. J. Power Sources 2013, 225 (3), 356.
18 Kakati N. ; Maiti J. ; Lee S. H. ; Yoon Y. S. Int. J. Hydrog. Energy 2012, 37 (24), 19055.
19 Jung J. ; Park B. ; Kim J. Nanoscale Res. Lett 2012, 7 (1), 1.
20 Abanin D. A. ; Morozov S. V. ; Ponomarenko L. A. ; Gorbachev R. V. ; Mayorov A. S. ; Katsnelson M. I. ; Watanabe K. ; Taniguchi T. ; Novoselov K. S. ; Levitov L. S. ; Geim A. K. Science 2011, 332 (6027), 328.
21 Bragaru A. ; Vasile E. ; Obreja C. ; Kusko M. ; Danila M. ; Radoi A. Mater. Chem. Phys 2014, 146 (3), 538.
22 Jothi P. R. ; Kannan S. ; G V. J. Power Sources 2015, 277 (3), 350.
23 Chen H. ; Duan J. ; Zhang X. ; Zhang Y. ; Guo C. ; Nie L. ; Liu X. Mater. Lett 2014, 126 (7), 9.
24 Huang H. ; Chen H. ; Sun D. ; Wang X. J. Power Sources 2012, 204 (4), 46.
25 Hu Y. ; Wu P. ; Zhang H. ; Cai C. Electrochim. Acta 2012, 85 (15), 314.
26 Hassan H. M. A. ; Abdelsayed V. ; Khder A. E. R. S. ; AbouZeid K. M. ; Terner J. ; El-Shall M. S. ; Al-Resayes S. I. ; El-Azhary A. A. J. Mater. Chem 2009, 19 (23), 3832.
27 Chien C. C. ; Jeng K. T. Mater. Chem. Phys 2006, 99 (1), 80.
28 Liu Z. ; Lee J. Y. ; Chen W. ; Han M. ; Gan L. M. Langmuir 2003, 20 (1), 181.
29 Zhang J. ; Yang H. ; Shen G. ; Cheng P. ; Zhang J. ; Guo S. Chem. Commun 2010, 46 (7), 1112.
30 Ji Z. ; Shen X. ; Zhu G. ; Chen K. ; Fu G. ; Tong L. J. Electroanal. Chem 2012, 682 (8), 95.
31 Georgakilas V. ; Gournisb D. ; Tzitziosa V. ; Pasquato L. ; Guldie D. M. ; Prato M. J. Mater. Chem 2007, 17 (26), 2679.
32 Yoo E. ; Okata T. ; Akita T. ; Kohyama M. ; Nakamura J. ; Honma I. Nano Lett 2009, 9 (6), 2255.
33 Zhou Y. K. ; He B. L. ; Zhou W. J. ; Huang J. ; Li X. H. ; Wu B. ; Li H. L. Electrochim. Acta 2004, 49 (2), 257.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[10] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[11] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[13] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.