ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2015,Vol.31>> Issue(11)>> 2057-2063     doi: 10.3866/PKU.WHXB201509183         中文摘要
Rényi Entropy, Tsallis Entropy and Onicescu Information Energy in Density Functional Reactivity Theory
LIU Shu-Bin1,2, RONG Chun-Ying1, WU Ze-Min1, LU Tian3
1 Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China;
2 Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA;
3 Beijing Kein Research Center for Natural Sciences, Beijing 100022, P. R. China
Full text: PDF (446KB) HTML Export: BibTeX | EndNote (RIS)

Density functional theory dictates that the electron density determines everything in a molecular system's ground state, including its structure and reactivity properties. However, little is known about how to use density functionals to predict molecular reactivity. Density functional reactivity theory is an effort to fill this gap: it is a theoretical and conceptual framework through which electron-related functionals can be used to accurately predict structure and reactivity. Such density functionals include quantities from the information-theoretic approach, such as Shannon entropy and Fisher information, which have shown great potential as reactivity descriptors. In this work, we introduce three closely related quantities: Rényi entropy, Tsallis entropy, and Onicescu information energy. We evaluated these quantities for a number of neutral atoms and molecules, revealing their scaling properties with respect to electronic energy and the total number of electrons. In addition, using the example of second-order Onicescu information energy, we examined how its patterns change with the angle of dihedral rotation of an ethane molecule at both the molecular level and atoms-in-molecules level. Using these quantities as additional reactivity descriptors, researchers can more accurately predict the structure and reactivity of molecular systems.

Keywords: Rényi entropy   Tsallis entropy   Onicescu information energy   Shannon entropy   Density functional reactivity theory  
Received: 2015-08-12 Accepted: 2015-09-18 Publication Date (Web): 2015-09-18
Corresponding Authors: LIU Shu-Bin, RONG Chun-Ying Email:;

Fund: The project was supported by the National Natural Science Foundation of China (21503076), and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China (Xiang Jiao Tong [2012]318).

Cite this article: LIU Shu-Bin, RONG Chun-Ying, WU Ze-Min, LU Tian. Rényi Entropy, Tsallis Entropy and Onicescu Information Energy in Density Functional Reactivity Theory[J]. Acta Phys. -Chim. Sin., 2015,31 (11): 2057-2063.    doi: 10.3866/PKU.WHXB201509183

(1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Clarendon Press: Oxford, England, 1989.
(2) Geerlings, P.; DeProft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
(3) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f
(4) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(5) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
(6) Fisher, R. A. Proc. Cambridge Philos. Soc.1925, 22, 700. doi: 10.1017/S0305004100009580
(7) Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
(8) Kullback, S.; Leibler, R. A. Ann. Math. Stat. 1951, 22, 79. doi: 10.1214/aoms/1177729694
(9) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
(10) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q
(11) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
(12) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702
(13) Rong, C. Y.; Lu, T.; Chattaraj, P. K.; Liu, S. B. Indian J. Chem., Sect. A 2014, 53, 970.
(14) Liu, S. B. J. Chem. Phys. 2014, 141, 194109. doi: 10.1063/1.4901898
(15) Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 30, 2055. [周夏禹, 荣春英, 卢天, 刘述斌. 物理化学学报, 2014, 30, 2055.] doi: 10.3866/PKU.WHXB201409193
(16) Rong, C. Y.; Lu, T.; Ayers, P. W.; Chattaraj, P. K.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 4977; Phys. Chem. Chem. Phys. 2015, 17, 11110.
(17) Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443
(18) Wu, W. J.; Wu, Z. M., Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216.
(19) Ré nyi, A. Probability Theory; North-Holland: Amsterdam, 1970.
(20) Tsallis, C. J. Stat. Phys. 1988, 52, 479. doi: 10.1007/BF01016429
(21) Onicescu, O. C. R. Acad. Sci. Paris A 1966, 263, 25.
(22) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.
(23) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033
(24) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096
(25) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, 2009.
(27) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
(28) Ditchfield, R.; Hehre, W. J.; Pople, J. J. Chem. Phys. 1971, 54, 724. doi: 10.1063/1.1674902
(29) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(30) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
(31) Liu, S. B.; Parr, R. G.; Nagy, A. Phys. Rev. A 1995, 52, 2645. doi: 10.1103/PhysRevA.52.2645
(32) Liu, S. B. Int. J. Quantum Chem. 2006, 106, 1762.
(33) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top