Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (11): 2165-2173    DOI: 10.3866/PKU.WHXB201509184
CATALYSIS AND SURFACE SCIENCE     
Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust
Hua-Feng. YU1,Guo-Pei. ZHANG1,Li-Na. HAN1,2,Li-Ping. CHANG1,Wei-Ren. BAO1,Jian-Cheng. WANG1,*()
1 Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
Download: HTML     PDF(1597KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cu-SSZ-13 catalysts had been prepared by using a microwave irradiation (MW) method and a conventional hydrothermal (CH) method, which were applied to removal of NOx from diesel vehicles by NH3. The physical and chemical properties of the samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, H2 temperature-programmed reduction (H2-TPR), electron paramagnetic resonance (EPR), NH3 temperature-programmed desorption (NH3-TPD), inductively coupled plasma-mass spectroscopy (ICP-MS), and X-ray photoelectron spectroscopy (XPS). The MW had some significant advantages, greatly shortening the crystallization time of SSZ-13 and improving its physical and chemical properties. The sample synthesized using MW with a crystallization time of 9 h had similar crystallinity to that synthesized by the CH with a crystallization time of 72 h. The sample synthesized by the MW had improved pore structure and amounts of Lewis (L) acid and Brönsted (B) acid. The great increase in Cu load as an active component indicated that the MW enhanced the ability of SSZ-13 to perform Cu exchange. The Cu-SSZ-13 synthesized by MW had improved low-temperature activity and anti-aging ability.



Key wordsMicrowave irradiation method      Conventional hydrothermal method      Cu-SSZ-13      DeNOx      Hydrothermal aging     
Received: 19 August 2015      Published: 18 September 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(20906067);“131 Talents Project” of Colleges and Universitiesin Shanxi Province, China, and Research Project Supported by Shanxi Scholarship Council of China(2015-039)
Corresponding Authors: Jian-Cheng. WANG     E-mail: wangjiancheng@tyut.edu.cn
Cite this article:

Hua-Feng. YU,Guo-Pei. ZHANG,Li-Na. HAN,Li-Ping. CHANG,Wei-Ren. BAO,Jian-Cheng. WANG. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust. Acta Physico-Chimica Sinca, 2015, 31(11): 2165-2173.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201509184     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I11/2165

Fig 1 NH3-SCR activity (a) and N2O formation (b) of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment MW: samples prepared by microwave irradiation method; CH: samples prepared by conventional hydrothermal method; F: fresh samples; A: aged samples. reaction conditions: 0.05% NOx, 0.05% NH3, 5% O2, He balance gas, GHSV = 120000 h–1. aging conditions: 10% H2O/He, gas flow rate of 400 mL ? min–1, 780 ℃, 20 h
Fig 2 XRD patterns of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment
Fig 3 H2-TPR profiles of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment
Fig 4 EPR profiles (A) and hyperfine structure topography (B) of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment background: background of EPR profiles; signal area: the sun of signal areaⅠand signal area Ⅱ
Fig 5 NH3-TPD profiles of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment
Fig 6 Cu 2p XPS spectra of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment
Sample w(Cusur)/% $w({\rm{Cu}}_{{\rm{sur}}}^{2 + }/w\left({{\rm{C}}{{\rm{u}}_{{\rm{sur}}}}} \right)$ w(Sisur)/% w(Alsur)/% w(Sisur)/w(Alsur)
MW-F 2.14 0.40 33.93 7.18 4.72
MW-A 2.69 0.34 33.69 8.07 4.17
CH-F 1.43 0.30 36.80 7.66 4.81
CH-A 2.80 0.39 32.89 8.93 3.68
sur: surface
Table 1 Elemental contents on the surface of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment
Sample ABET/(m2·g–1) ABET–mic/(m2·g–1) Vt/(cm3·g–1)
MW-F 471.31 460.21 0.22
MW-A 409.16 384.17 0.25
CH-F 402.79 392.10 0.20
CH-A 195.34 182.06 0.14
ABET: total surface area; Vt: total pore volume; ABET-mic: micropore surface area
Table 2 Pore structure parameters of Cu-SSZ-13 catalysts before and after hydrothermal aging treatment
1 Granger P. ; Parvulescu V. I. Chem. Rev 2011, 111 (5), 3155.
2 Iwamoto, M.; Furukawa, H.; Mine, Y.; Uemura, F.; Mikuriya, S. I.; Kagawa, S. J. Chem. Soc. Chem. Commun. 1986, No. 16, 1272.
3 Kwak J. H. ; Tran D. ; Burton S. D. ; Szanyi J. ; Lee J. H. ; Peden C. H. F. J. Catal 2012, 287, 203.
4 Hao T. ; Wang J. ; Yu T. ; Wang J. Q. ; Shen M. Q. Acta Phys. -Chim. Sin 2014, 30 (8), 1567.
4 郝腾; 王军; 于铁; 王建强; 沈美庆. 物理化学学报, 2014, 30 (8), 1567.
5 Zhang Y. ; Wang H. N. ; Chen R. Y. Acta Phys. -Chim. Sin 2015, 31 (2), 329.
5 张宇; 王红宁; 陈若愚. 物理化学学报, 2015, 31 (2), 329.
6 Shi L. ; Yu T. ; Wang X. Q. ; Wang J. ; Shen M. Q. Acta Phys. -Chim. Sin 2013, 29 (7), 1550.
6 石琳; 于铁; 王欣全; 王军; 沈美庆. 物理化学学报, 2013, 29 (7), 1550.
7 Fickel D. W. ; D'Addio E. ; Lauterbach J. A. ; Lobo R. F. Appl. Catal. B: Environ 2011, 102 (3-4), 441.
8 Shishkin A. ; Kannisto H. ; Carlsson P. A. ; Härelind H. ; Skoglundh M. Catal. Sci. Technol 2014, 4 (11), 3917.
9 Fickel D. W. ; Lobo R. F. J. Phys. Chem. C 2009, 114 (3), 1633.
10 Meng X. J. ; Xiao F. S. Chem. Rev 2014, 114 (2), 1521.
11 Kim D. S. ; Chang J. S. ; Hwang J. S. ; Park S. E. ; Kim J. M. Microporous Mesoporous Mat 2004, 68 (1), 77.
12 Cheng Z. L. ; Zhao Z. S. ; Wan H. L. Acta Phys. -Chim. Sin 2003, 19 (6), 487.
12 程志林; 晁自胜; 万惠霖. 物理化学学报, 2003, 19 (6), 487.
13 Chew T. L. ; Ahmad A. L. ; Bhatia S. Chem. Eng. J 2011, 171 (3), 1053.
14 Ling Y. ; Zheng Y. T. ; Liu Y. M. ; Wang Z. D. ; Wu H. H. ; Wu P. Acta Chim. Sin 2010, 68 (20), 2035.
14 凌云; 郑玉婷; 刘月明; 王振东; 吴海虹; 吴鹏. 化学学报, 2010, 68 (20), 2035.
15 Lin S. ; Li J. Y. ; Sharma R. P. ; Yu J. H. ; Xu R. R. Top. Catal 2010, 53 (19-20), 1304.
16 Yao Y. F. ; Zhang M. S. ; Yang Y. S. Acta Phys. -Chim. Sin 2001, 17 (12), 1117.
16 姚云峰; 张迈生; 杨燕生. 物理化学学报, 2001, 17 (12), 1117.
17 Yin D. H. ; Qin L. S. ; Liu J. F. ; Yin Z. L. Acta Phys. -Chim. Sin 2005, 20 (9), 1150.
17 银董红; 秦亮生; 刘建福; 尹笃林. 物理化学学报, 2005, 20 (9), 1150.
18 Wang S. P. ; Shi Y. ; Ma X. B. Microporous Mesoporous Mat 2012, 156, 22.
19 Sapawe N. ; Jalil A. A. ; Triwahyono S. ; Shah M. I. A. ; Jusoh R. ; Salleh N. F. M. ; Hameed B. H. ; Karim A. H. ; Chem. Eng. J. Chem. Eng. J 2013, 229, 388.
20 Koo J. B. ; Jiang N. ; Saravanamurugan S. ; Bejblova M. ; Musilova Z. ; Cejka J. ; Park S. E. J. Catal 2010, 276 (2), 327.
21 Somani O. G. ; Choudhari A. L. ; Rao B. S. ; Mirajkar S. P. Mater. Chem. Phys 2003, 82 (3), 538.
22 Shalmani F. M. ; Askari S. ; Halladj R. Rev. Chem. Eng 2013, 29 (2), 99.
23 Celer E. B. ; Jaroniec M. J. Am. Chem. Soc 2006, 128 (44), 14408.
24 Ren L. M. ; Zhu L. F. ; Yang C. G. ; Chen Y. M. ; Sun Q. ; Zhang H. Y. ; Li C. J. ; Nawaz F. ; Meng X. J. ; Xiao F. S. Chem. Commun 2011, 47 (35), 9789.
25 Xie L. J. ; Liu F. D. ; Ren L. M. ; Shi X. Y. ; Xiao F. S. ; He H. Environ. Sci. Technol 2014, 48 (1), 566.
26 Ma L. ; Cheng Y. S. ; Cavataio G. ; McCabe R. W. ; Fu L. X. ; Li J. H. Chem. Eng. J 2013, 225, 323.
27 Kwak J. H. ; Tonkyn R. G. ; Kim D. H. ; Szanyi J. ; Peden C. H. F. J. Catal 2010, 275 (2), 187.
28 Korhonen S. T. ; Fickel D. W. ; Lobo R. F. ; Weckhuysen B. M. ; Beale A. M. Chem. Commun 2011, 47 (2), 800.
29 Deka U. ; Juhin A. ; Eilertsen E. A. ; Emerich H. ; Green M. A. ; Korhonen S. T. ; Weckhuysen B. M. ; Beale A. M. J. Phys. Chem. C 2012, 116 (7), 4809.
30 Kim Y. J. ; Lee J. K. ; Min K. M. ; Hong S. B. ; Nam I. S. ; Cho B. K. J. Catal 2014, 311, 447.
31 Gao F. ; Walter E. D. ; Karp E. M. ; Luo J. ; Tonkyn R. G. ; Kwak J. H. ; Szanyi J. ; Peden C. H. F. J. Catal 2013, 300, 20.
32 Paolucci C. ; Verma A. A. ; Bates S. A. ; Kispersky V. F. ; Miller J. T. ; Gounder R. ; Delgass W. N. ; Ribeiro F. H. ; Schneider W. F. Angew. Chem. Int. Edit 2014, 126 (44), 12022.
33 Wang L. ; Li W. ; Qi G. ; Weng D. J. Catal 2012, 289, 21.
34 Richter M. ; Fait M. J. G. ; Eckelt R. ; Schneider M. ; Radnik J. ; Heidemann D. ; Fricke R. J. Catal 2007, 245 (1), 11.
35 Kwak J. ; Tran D. ; Szanyi J. ; Peden C. F. ; Lee J. Catal. Lett 2012, 142 (3), 295.
36 Giordanino F. ; Vennestrom P. N. R. ; Lundegaard L. F. ; Stappen F. N. ; Mossin S. ; Beato P. ; Bordiga S. ; Lamberti C. Dalton Trans 2013, 42 (35), 12741.
37 Wang J. C. ; Peng Z. L. ; Qiao H. ; Han L. N. ; Bao W. R. ; Chang L. P. ; Feng G. ; Liu W. RSC Adv 2014, 4 (80), 42403.
38 Yahiro H. ; Ohmori Y. ; Shiotani M. Microporous Mesoporous Mat 2005, 83 (1-3), 165.
39 Putluru S. S. R. ; Riisager A. ; Fehrmann R. Appl. Catal. B: Environ 2011, 101 (3-4), 183.
40 Wang J. ; Yu T. ; Wang X. Q. ; Qi G. ; Xue J. J. ; Shen M. Q. ; Li W. Appl. Catal. B: Environ 2012, 127, 137.
41 Wang D. ; Jangjou Y. ; Liu Y. ; Sharma M. K. ; Luo J. Y. ; Li J. H. ; Kamasamudram K. ; Epling W. S. Appl. Catal. B: Environ 2015, 165, 438.
42 Zhu H. ; Kwak J. H. ; Peden C. H. F. ; Szanyi J. Catal. Today 2013, 205, 16.
43 Dang T. T. H. ; Hoang D. L. ; Schneider M. ; Hunger M. ; Martin A. Z. Anorg. Allg. Chem 2014, 640 (8-9), 1576.
44 álvaro-MuozT.; SastreE.; Marquez-AlvarezC.. Catal. Sci. Technol, 2014, 4 (12), 4330.
45 Yang J. ; Wu W. ; Zhou Y. J. ; Wu G. ; Zhao A. J. ; Kikhtyanin O. V. ; Toktarev A. V. ; Echevskii G. V. Chin. J. Catal 2011, 32 (8), 1234.
45 杨杰; 吴伟; 周亚静; 武光; 赵爱娟; 基赫佳宁O V.; 托克塔列夫A V.; 伊切夫斯基G V.. 催化学报, 2011, 32 (8), 1234.
46 Chen B. H. ; Xu R. N. ; Zhang R. D. ; Liu N. Environ. Sci. Technol 2014, 48 (23), 13909.
47 Wang J. C. ; Liu Z. Q. ; Feng G. ; Chang L. P. ; Bao W. R. Fuel 2013, 109, 101.
[1] ZHANG Yu, WANG Hong-Ning, CHEN Ruo-Yu. In situ Synthesis of Cu-SSZ-13/Cordierite Monolithic Catalyst for the Selective Catalytic Reduction of NO with NH3[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 329-336.