Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (11): 2139-2150    DOI: 10.3866/PKU.WHXB201509281
CATALYSIS AND SURFACE SCIENCE     
ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction
Lan-Lan. ZHANG,Yu. SONG,Guo-Dong. LI,Shao-Long. ZHANG,Yun-Shan. SHANG,Yan-Jun. GONG*()
Download: HTML     PDF(8750KB) Export: BibTeX | EndNote (RIS)      

Abstract  

ZSM-5 zeolites with different pore structures were synthesized using different templates (tetrapropyl ammonium hydroxide (TPAOH), cetyltrimethylammonium bromide (CTAB) and C18-6-6Br2). The obtained nanosized (NZ), mesoporous (MZ), and nanosheets (NSZ) ZSM-5 samples were compared with conventional microporous ZSM-5 zeolite (CZ). The physicochemical properties of these samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption, and temperature-programmed desorption of ammonia (NH3-TPD). The results showed that the mesopore volumes and surface areas of the four samples increased in the order NSZ > MZ > NZ > CZ, and the ratio of strong/weak acidity increased in the order CZ > MZ > NZ > NSZ. In the methanol to propylene (MTP) reaction, the catalyst porosity played an important role on the product selectivity and catalytic stability. The selectivities for propylene and total olefins improved with increasing mesoporosity; NSZ, with the largest mesopore volume, gave the highest propylene selectivity, i.e., 47.5%, and 78.4% total olefins. Meanwhile, the introduction of mesopores into the ZSM-5 zeolite extended the catalytic lifetime. The NZ sample displayed reliable MTP catalytic activity for 200 h, which was predominately attributed to its optimal combination of acidity and porosity.



Key wordsZSM-5 zeolite      Nanometer      Nanosheet      Mesopore      Methanol to propylene     
Received: 06 July 2015      Published: 28 September 2015
MSC2000:  O643  
Fund:  the National Key Basic Research Program of China (973)(2012CB215003);National Natural Science Foundationof China(21176255, 21276278)
Corresponding Authors: Yan-Jun. GONG     E-mail: gongyj@cup.edu.cn
Cite this article:

Lan-Lan. ZHANG,Yu. SONG,Guo-Dong. LI,Shao-Long. ZHANG,Yun-Shan. SHANG,Yan-Jun. GONG. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction. Acta Physico-Chimica Sinca, 2015, 31(11): 2139-2150.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201509281     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I11/2139

Fig 1 XRD patterns of the as-synthesized ZSM-5 zeolites with different micro-mesoporous structures
Fig 2 SEM images of the as-synthesized ZSM-5 zeolite with different samples
Fig 3 N2 adsorption-desorption isotherms (a) and pore size distributions (b) of the as-synthesized ZSM-5 zeolite with different samples
Sample SBETa /(m2·g–1) Smicrob /(m2·g–1) Sext /(m2·g–1) Vtotalc /(cm3·g–1) Vmicrob /(cm3·g–1) Vmeso /(cm3·g–1)
CZ 328 254 74 0.18 0.12 0.06
NZ 364 245 119 0.39 0.12 0.27
MZ 374 203 171 0.45 0.09 0.36
NSZ 505 197 308 0.63 0.09 0.54
a SBET (BET surface area) obtained from the adsorption isotherm, b Smicro (micropore surface areas) and Vmicro (micropore volumes) calculated using t-plot method, c Vtotal (total pore volumes) obtained at relative pressure (p/p0) = 0.99
Table 1 Textural properties of the as-synthesized ZSM-5 zeolite with different samples
Fig 4 NH3-TPD profiles of the as-synthesized ZSM-5 zeolite with different samples
Sample n(SiO2)/n(Al2O3)a Acidityb/(mmol·g–1) Tpeak/℃
weak strong total strong/weak peak1 peak2
CZ 232 0.18 0.18 0.36 1.00 178 375
NZ 254 0.18 0.15 0.33 0.83 184 368
MZ 286 0.12 0.11 0.23 0.92 182 370
NSZ 265 0.16 0.11 0.27 0.69 190 382
a SiO2 /Al2O3 molar ratio of the as-synthesized ZSM-5 zeolite determined by X-ray fluorescence (XRF) analysis; b concentration of acid sites from NH3-TPD measurements
Table 2 Acidity properties from NH3-TPD of the as-synthesized ZSM-5 zeolite with different samples
Fig 5 Product selectivity (S) as a function of time on stream over the as-synthesized ZSM-5 zeolite with different samples ■ C2H4; ● C3H6; ★ C4H8; ◇ C10-C40; △ C5+
Fig 6 Products distribution at the initial stage in MTP conversion over the as-synthesized ZSM-5 zeolites with different samples P/E: propylene/ethylene
  Samples
CZ NZ MZ NSZ
time on stream/h 62 116 76 90
methanol conversion/% a 99.8 99.9 100.0 99.9
ProductS/%
methane 2.3 2.5 1.5 1.0
ethane 0.1 0.2 0.1 0.1
ethylene 7.5 6.7 7.4 5.8
propane 0.9 0.8 0.7 0.8
propylene 41.0 45.7 45.3 47.5
butane 3.5 1.8 2.9 2.5
butylene 19.6 23.5 23.8 25.0
C5+b 25.1 18.8 18.5 17.3
C2=–C4=c 68.1 75.9 76.4 78.4
P/E mass ratio 5.5 6.8 6.1 8.1
C4-HTI d 0.152 0.071 0.107 0.090
a reaction conditions: T = 470℃, p = 0.1 MPa, n(CH3OH) : n(H2O) = 1 : 1, weight hourly space velocity (WHSV) = 3.0 h–1; b C5+ and higher hydrocarbons; c total olefins (ethylene, propylene, and butylene); d C4-HTI (C4 hydrogen transfer index) = m(C4 alkanes)/m(C4 alkanes + C4 alkenes)
Table 3 Product distribution at steady stage in MTP conversion over the as-synthesized ZSM-5 zeolite with different samples
No. ZSM-5 Reaction conditions S(propylene)/% S(total olefins)/% Work
WHSV/h–1 n(MeOH)/n(H2O)
A Mn-ZSM-5 0.9 1:1 * 58.4 75.9 Rostamizadeh et al 43
B Na-ZSM-5 0.9 1:1 * 37.6 68.3 Yaripour et al 44
C high-silica 6 2:3 * 45.9 76.9 Wei et al 45
D nanosheets 3 1:1 46.7 78.7 Zhang et al 30
E nanosheets 1.5 1:4 51.0 76.7 Hu et al 29
F mesoporous 1 1:1 43.7 78.7 Ahmadpour J. et al 26
G mesoporous 2 1:1 46.3 Zhang et al 24
H mesoporous 1 1:1 42.2 67.8 Wen et al 18
I nanosheets 3 1:1 47.5 78.4 this work (NSZ)
J nanosized 3 1:1 45.7 75.9 this work (NZ)
K mesoporous 3 1:1 45.3 76.4 this work (MZ)
L microporous 3 1:1 41.0 68.1 this work (CZ)
* mass ratio
Table 4 Catalytic performance of MTP reaction over the various ZSM-5 catalysts
Fig 7 Methanol conversion with time on stream over the as-synthesized ZSM-5 samples
Sample CZ NZ MZ NSZ
coke deposit a / (mg•g–1) 113 102 84 98
average coking rate b/ (g•g–1•h–1) 1.15 × 10–3 5.1 × 10–4 7.2 × 10–4 6.5 × 10–4
a calculated by TG analysis of the deactivated catalysts; b average coking rate = coke deposit/catalytic lifetime
Table 5 Amount of coke and the average coking rate over the as-synthesized ZSM-5 zeolite with different samples
1 Chang C.D. Catal. Rev 1983, 25 (1), 1.
2 Keil F. J. Microporous Mesoporous Mat 1999, 29 (1-2), 49.
3 Chen J. Q. ; Bozzano A. ; Glover B. ; Fuglerud T. ; Kvisle S. Catal. Today 2005, 106 (1-4), 103.
4 Chang C. D. ; Chu C. T. W. ; Socha R. F. J. Catal 1984, 86 (2), 289.
5 Stöcker M. M. Microporous Mesoporous Mat 1999, 29 (1-2), 3.
6 Haw J. F. ; Song W. ; Marcus D. M. ; Nicholas J. B. Accounts Chem. Res 2003, 36 (5), 317.
7 Olson D. H. ; Kokotailo G. T. ; Lawton S. L. ; Meier W. M. J. Phys. Chem 1981, 85 (15), 2238.
8 Dahl I. ; Kolboe S. Catal. Lett 1993, 20 (3-4), 329.
9 Bjø rgen M. ; Svelle S. ; Joensen F. ; Nerlov J. ; Kolboe S. ; Bonino F. ; Palumbo L. ; Bordiga S. ; Olsbye U. J. Catal 2007, 249 (2), 195.
10 Corma A. Chem. Rev 1997, 97 (6), 2373.
11 Yao M. ; Hu S. ; Wang J. ; Dou T. ; Wu Y. P. Acta Phys. -Chim. Sin 2012, 28 (9), 2122.
11 姚敏; 胡思; 王俭; 窦涛; 伍永平. 物理化学学报, 2012, 28 (9), 2122.
12 Rownaghi A. A. ; Rezaei F. ; Hedlund J. Catal. Commun 2011, 14 (1), 37.
13 Khare R. ; Millar D. ; Bhan A. J. Catal 2015, 321, 23.
14 Wen P. Y. ; Mei C. S. ; Liu H. X. ; Yang W. M. ; Chen Q. L. Chem. Rea. Eng. Technol 2007, 23, 481.
14 温鹏宇; 梅长松; 刘红星; 杨为民; 陈庆龄. 化学反应工程与工艺, 2007, 23, 481.
15 Firoozi M. ; Baghalha M. ; Asadi M. Catal. Commun 2009, 10 (12), 1582.
16 Bjørgen M. ; Joensen F. ; Spangsberg Holm M. ; Olsbye U. ; Lillerud K. P. ; Svelle S. Appl. Catal. A 2008, 345 (1), 43.
17 Rownaghi A. A. ; Hedlund J. Ind. Eng. Chem. Res 2011, 50 (21), 11872.
18 Mei C. ; Wen P. ; Liu Z. ; Liu H. ; Wang Y. ; Yang W. ; Xie Z. ; Hua W. ; Gao Z. J. Catal 2008, 258 (1), 243.
19 Serrano D. P. ; Escola J. M. ; Pizarro P. Chem. Soc. Rev 2013, 42 (9), 4004.
20 Perego C. ; Millini R. Chem. Soc. Rev 2013, 42 (9), 3956.
21 Almutairi S. M. T. ; Mezari B. ; Pidko E. A. ; Magusin P. C. M. M. ; Hensen E. J. M. J. Catal 2013, 307, 194.
22 Sazama P. ; Wichterlova B. ; Dedecek J. ; Tvaruzkova Z. ; Musilova Z. ; Palumbo L. ; Sklenak S. ; Gonsiorova O. Microporous Mesoporous Mat 2011, 143 (1), 87.
23 Zhao L. ; Gao J. ; Xu C. ; Shen B. Fuel Process. Technol 2011, 92 (3), 414.
24 Zhang Q. ; Hu S. ; Zhang L. ; Wu Z. ; Gong Y. ; Dou T. Green Chem 2014, 16 (1), 77.
25 Sun C. ; Du J. ; Liu J. ; Yang Y. ; Ren N. ; Shen W. ; Xu H. ; Tang Y. Chem. Commun 2010, 46 (15), 2671.
26 Ahmadpour J. ; Taghizadeh M. J. Nat. Gas. Sci. Eng 2015, 23, 184.
27 Wang Q. ; Xu S. ; Chen J. ; Wei Y. ; Li J. ; Fan D. ; Yu Z. ; Qi Y. ; He Y. ; Xu S. ; Yuan C. ; Zhou Y. ; Wang J. ; Zhang M. ; Su B. ; Liu Z. RSC Adv 2014, 4 (41), 21479.
28 Choi M. ; Na K. ; Kim J. ; Sakamoto Y. ; Terasaki O. ; Ryoo R. Nature 2009, 461 (7261), 246.
29 Hu S. ; Shan J. ; Zhang Q. ; Wang Y. ; Liu Y. ; Gong Y. ; Wu Z. ; Dou T. Appl. Catal. A 2012, 445-446, 215.
30 Zhang S. L. ; Zhang L. L. ; Wang W. G. ; Min Y. Y. ; Ma T. ; Song Y. ; Gong Y. J. ; Dou T. Acta Phys. -Chim. Sin 2014, 30 (3), 535.
30 张少龙; 张兰兰; 王务刚; 闵媛媛; 马通; 宋宇; 巩雁军; 窦涛. 物理化学学报, 2014, 30 (3), 535.
31 Wang W. G. ; Zhang S. L. ; Zhang L. L. ; Wang Y. ; Liu X. L. ; Gong Y. J. ; Dou T. Acta Phys. -Chim. Sin 2013, 29 (9), 2035.
31 王务刚; 张少龙; 张兰兰; 王艳; 刘晓玲; 巩雁军; 窦涛. 物理化学学报, 2013, 29 (9), 2035.
32 Na K. ; Choi M. ; Park W. ; Sakamoto Y. ; Terasaki O. ; Ryoo R. J. Am. Chem. Soc 2010, 132 (12), 4169.
33 Treacy, M. M. J.; Higgins, J. B. MFI—Tetrapropylammonium ZSM-5. In Collection of Simulated XRD Powder Patterns for Zeolites (fifth); Treacy, M. M. J., Higgins, J. B., Eds.; Elsevier Science B.V.: Amsterdam, 2007; p 276.
34 Egeblad K. ; Christensen C. H. ; Kustova M. ; Christensen C. H. Chem. Mater 2008, 20 (3), 946.
35 Sing K. S. ; Williams R. T. Adsorpt. Sci. Technol 2004, 22 (10), 773.
36 Groen J. C. ; Peffer L. A. A. ; Pérez-Ramírez. J. Microporous Mesoporous Mat 2003, 60 (1-3), 1.
37 Olsbye U. ; Svelle S. ; Bjørgen M. ; Beato P. ; Janssens T. V. W. ; Joensen F. ; Bordiga S. ; Lillerud K. P. Angew. Chem. Int. Edit 2012, 51 (24), 5810.
38 Bjørgen M. ; Joensen F. ; Lillerud K. P. ; Olsbye U. ; Svelle S. Catal. Today 2009, 142 (1-2), 90.
39 Svelle S. ; Joensen F. ; Nerlov J. ; Olsbye U. ; Lillerud K. P. ; Kolboe S. ; Bjørgen M. J. Am. Chem. Soc 2006, 128 (46), 14770.
40 Guo Q. S. ; Mao D. S. ; Lao Y. P. ; Lu G. Z. Chin. J. Catal 2009, 30 (12), 1248.
40 郭强胜; 毛东森; 劳嫣萍; 卢冠忠. 催化学报, 2009, 30 (12), 1248.
41 Zhang S. ; Gong Y. ; Zhang L. ; Liu Y. ; Dou T. ; Xu J. ; Deng F. Fuel Process. Technol 2015, 129, 130.
42 Yang Y. ; Sun C. ; Du J. ; Yue Y. ; Hua W. ; Zhang C. ; Shen W. ; Xu H. Catal. Commun 2012, 24, 44.
43 Rostamizadeh M. ; Taeb A. J. Ind. Eng. Chem 2015, 27, 297.
44 Yaripour F. ; Shariatinia Z. ; Sahebdelfar S. ; Irandoukht A. J. Nat. Gas. Sci. Eng 2015, 22, 260.
45 Wei R. ; Li C. ; Yang C. ; Shan H. J. Nat. Gas Chem 2011, 20 (3), 261.
46 Westgård Erichsen M. ; Svelle S. ; Olsbye U. Catal. Today 2013, 215 (216)
47 Wen P. Y. ; Mei C. S. ; Liu H. X. ; Yang W. M. ; Chen Q. L. Acta Petrolei. Sinica (Petroleum Processing Section) 2008, 24 (4), 446.
47 温鹏宇; 梅长松; 刘红星; 杨为民; 陈庆龄. 石油学报(石油加工), 2008, 24 (4), 446.
48 Mores D. ; Kornatowski J. ; Olsbye U. ; Weckhuysen B. M. Chem. Eur. J 2011, 17 (10), 2874.
49 Lee K. Y. ; Kang M. Y. ; Ihm S. K. J. Phys. Chem. Solids 2012, 73 (12), 1542.
50 Schmidt F. ; Hoffmann C. ; Giordanino F. ; Bordiga S. ; Simon P. ; Carrillo-Cabrera W. ; Kaskel S. J. Catal 2013, 307, 238.
51 Kim J. ; Choi M. ; Ryoo R. J. Catal 2010, 269 (1), 219.
52 Bjørgen M. ; Akyalcin S. ; Olsbye U. ; Benard S. ; Kolboe S. ; Svelle S. J. Catal 2010, 275 (1), 170.
[1] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[2] Hui WANG,De-Chun ZOU. Polyol-Mediated Synthesis of MoS2 Nanosheets Using Sulfur Powder as the Sulfur Source[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1027-1032.
[3] Si HU,Qing ZHANG,Yan-Jun GONG,Ying ZHANG,Zhi-Jie WU,Tao DOU. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1785-1794.
[4] Nai-En SHI,Chuan-Yuan SONG,Jun ZHANG,Wei HUANG. Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2447-2461.
[5] Xu-Qiang HAO,Hao YANG,Zhi-Liang JIN,Jing XU,Shi-Xiong MIN,Gong-Xuan Lü. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2581-2592.
[6] Cheng-Cheng CHEN,Ning ZHANG,Yong-Chang LIU,Yi-Jing WANG,Jun CHEN. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 349-355.
[7] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1374-1382.
[8] ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 793-799.
[9] Yan-Zhong. HAO,Zhi-Min. GUO,Bao. SUN,Juan. PEI,Shang-Xin. WANG,Ying-Pin. LI. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Physico-Chimica Sinca, 2015, 31(11): 2109-2116.
[10] MIAO Hai-Xia, MA Li, MA Jing-Hong, LI Dui-Chun, LI Rui-Feng. Benzylation of Naphthalene over a Mesoporous ZSM-5 Zeolite Microsphere Catalyst[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1518-1526.
[11] ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinca, 2014, 30(3): 535-543.
[12] CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2014, 30(12): 2256-2262.
[13] SUN Qian, YANG Xiong-Bo, GAO Ya-Jun, ZHAO Jian-Wei. Molecular Dynamics Simulation of the Deformation Behavior of Ag Nanowires with Different Twin Boundary Density under Tension Loading[J]. Acta Physico-Chimica Sinca, 2014, 30(11): 2015-2023.
[14] WANG Wu-Gang, ZHANG Shao-Long, ZHANG Lan-Lan, WANG Yan, LIU Xiao-Ling, GONG Yan-Jun, DOU Tao. Synthesis and Characterization of Nanosheet ZSM-5 Zeolites with Different SiO2/Al2O3 Molar Ratios[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 2035-2040.
[15] WEI Yu-Long, BAO Chun-Xiong, GAO Hao, HUANG Huan, YU Tao, ZOU Zhi-Gang. Increasing Specific Surface Area of (110)-Oriented ZnO Nanosheets by Sulfuration-Oxidization Treatment for Photoelectrode Applications[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1975-1980.