Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (11): 2099-2108    DOI: 10.3866/PKU.WHXB201510081
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation of Cross-Linked Porous Carbon Nanofiber Networks by Electrospinning Method and Their Electrochemical Capacitive Behaviors
Jian-Jian. LU,Zong-Rong. YING(),Xin-Dong. LIU,Shuang-Sheng. ZHAO
Download: HTML     PDF(7772KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cross-linked porous carbon nanofiber networks were successfully prepared by electrospinning followed by preoxidation and carbonization using low-cost melamine and polyacrylonitrile (PAN) as precursors. The structures and morphologies of the nanofiber networks were investigated using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and N2 adsorption/desorption. The carbon fibers had an interconnected nanofibrous morphology with a well-developed porous structure including micropores, mesopores and macropores, high-level nitrogen doping (up to 14.3%), and a small average diameter (about 89 nm). Without activation, the carbon nanofibers had a high specific capacitance of 194 F·g-1 at a current density of 0.05 A·g-1. Cycling experiments showed that the specific capacitance retained approximately 99.2% of the initial capacitance after 1000 cycles at a current density of 2 A·g-1, indicating an excellent electrochemical performance.



Key wordsMelamine      Electrospinning      Carbon nanofiber      Cross-linked network      Supercapacitor     
Received: 19 May 2015      Published: 08 October 2015
MSC2000:  O646  
Cite this article:

Jian-Jian. LU,Zong-Rong. YING,Xin-Dong. LIU,Shuang-Sheng. ZHAO. Preparation of Cross-Linked Porous Carbon Nanofiber Networks by Electrospinning Method and Their Electrochemical Capacitive Behaviors. Acta Phys. -Chim. Sin., 2015, 31(11): 2099-2108.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510081     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I11/2099

Fig 1 Schematic illustration of the synthesis of carbon nanofibers electrode
Fig 2 FTIR spectra of PAN, PM1, and PM2 electrospinning precursor organic nanofibers PAN: polyacrylonitrile; PM1: m(PAN) : m(melamine) = 8 : 1; PM2: m(PAN) : m(melamine) = 4 : 1
Fig 3 TGA curves of PAN, PM1, and PM2 electrospinning precursor organic nanofibers
Fig 4 SEM images of electrospinning precursor organic nanofibers and carbon nanofibers photo images of precursor organic nanofibers (A) and carbon nanofibers (E); SEM images of PAN, PM1, and PM2. B, C, D for organic precursor nanofibers; F, G, H for carbon nanofibers
Fig 5 XPS survey scan spectum (A) and N 1s fine scan spectra (B) of PM2
Fig 6 XRD patterns of PAN, PM1, PM2 carbon nanofibers
Fig 7 Raman spectra of PAN, PM1, and PM2 carbon nanofibers
Sample Raman shift/cm–1 R
D-peak G-peak
PAN 1357 1578 1.05
PM1 1357 1570 1.11
PM2 1361 1588 1.18
Table 1 Raman shift of D-peak and G-peak based on Fig. 7
Fig 8 Nitrogen adsorption-desorption isotherms (A) and pore size distributions (B) of PAN, PM1, and PM2 carbon nanofibers
Fig 9 (A) Cyclic voltammetry curves of PM2 carbon nanofiber electrode at different scan rates; (B) cyclic voltammetry curves of PAN, PM1, and PM2 carbon nanofiber electrodes at 100 mV·s–1 scan rate; (C) galvanostatic charge-discharge curves of PM2 carbon nanofiber electrode at different current densities; (D), (E) galvanostatic charge-discharge curves of PAN, PM1, and PM2 carbon nanofibers electrodes at different current densities ((D) 0.05 A·g–1, (E)10 A·g–1); (F) galvanostatic charge-discharge curves of PM2 carbon nanofiber electrode at different KOH concentrations
Fig 10 Electrochemical impedance spectroscopy (EIS) curves of PAN, PM1, and PM2 carbon nanofiber electrodes Inset is the high frequency region.
Fig 11 Specific capacitance of three carbon nanofiber electrodes at various current densities
Fig 12 Cycling stability of PAN, PM1, and PM2 carbon nanofiber electrodes at a current density of 2 A·g–1
1 Li Z. H. ; Li S. J. ; Zhou J. ; Zhu T. T. ; Shen H. L. ; Zhuo S. P. Acta Phys. -Chim. Sin 2015, 31 (4), 676.
1 李朝辉; 李仕蛟; 周晋; 朱婷婷; 沈红龙; 禚淑萍. 物理化学学报, 2015, 31 (4), 676.
2 Li L. ; He Y. Q. ; Chu X. F. ; Li Y. M. ; Sun F. F. ; Huang H. Z. Acta Phys. -Chim. Sin 2013, 29 (8), 1681.
2 李乐; 贺蕴秋; 储晓菲; 李一鸣; 孙芳芳; 黄河周. 物理化学学报, 2013, 29 (8), 1681.
3 Xu G. Y. ; Ding B. ; Nie P. ; Luo H. J. ; Zhang X. G. Acta Phys. -Chim. Sin 2013, 29 (3), 546.
3 徐桂银; 丁兵; 聂平; 骆宏钧; 张校刚. 物理化学学报, 2013, 29 (3), 546.
4 Chen C. J. ; Hu Z. A. ; Hu Y. Y. ; Li L. ; Yang Y. Y. ; An N. ; Li Z. M. ; Wu H. Y. Acta Phys. -Chim. Sin 2014, 30 (12), 2256.
4 陈婵娟; 胡中爱; 胡英瑛; 李丽; 杨玉英; 安宁; 李志敏; 吴红英. 物理化学学报, 2014, 30 (12), 2256.
5 Guo P. Z. ; Ji Q. Q. ; Zhang L. L. ; Zhao S. Y. ; Zhao X. S. Acta Phys. -Chim. Sin 2011, 27 (12), 2836.
5 郭培志; 季倩倩; 张丽莉; 赵善玉; 赵修松. 物理化学学报, 2011, 27 (12), 2836.
6 Ma G. F. ; Mu J. J. ; Zhang Z. G. ; Sun K. J. ; Peng H. ; Lei Z. Q. Acta Phys. -Chim. Sin 2013, 29 (11), 2385.
6 马国富; 牟晶晶; 张稚国; 孙看军; 彭辉; 雷自强. 物理化学学报, 2013, 29 (11), 2385.
7 Wang J. D. ; Peng T. J. ; Sun H. J. ; Hou Y. D. Acta Phys. -Chim. Sin 2014, 30 (11), 2077.
7 汪建德; 彭同江; 孙红娟; 侯云丹. 物理化学学报, 2014, 30 (11), 2077.
8 Peng X. ; Li D. Q. ; Peng J. ; Peng L. L. ; Wu C. Z. ; Xie Y. Bull Sci. Technol 2013, 58 (28-29), 2886.
8 彭旭; 李典奇; 彭晶; 彭乐乐; 吴长征; 谢毅. 科学通报, 2013, 58 (28-29), 2886.
9 Lai C. ; Zhou Z. ; Zhang L. ; Wang X. ; Zhou Q. ; Zhao Y. ; Wang Y. ; Wu X. F. ; Zhu Z. ; Fong H. J. Power Sources 2014, 247, 134.
10 Yang S. ; Xu G. Y. ; Han J. P. ; Bing H. ; Dou H. ; Zhang X. G. Acta Phys. -Chim. Sin 2015, 31 (4), 685.
10 杨硕; 徐桂银; 韩金鹏; 邴欢; 窦辉; 张校刚. 物理化学学报, 2015, 31 (4), 685.
11 Zhao L. ; Wu Q. ; Han R. ; Wu J. ; Yao W. Materials Review 2013, 27 (11), 54.
12 Su D. S. ; Chen X. ; Weinberg G. ; Klein-Hofmann A. ; Timpe O. ; Hamid S. B. A. ; Schlö gl R. Angew. Chem. Int. Edit 2005, 44 (34), 5488.
13 Sharma S. ; Pollet B. G. J. Power Sources 2012, 208, 96.
14 Wu C. ; Yao X. ; Zhang H. Int. J. Hydrog. Energy 2010, 35 (1), 247.
15 Chinthaginjala J. ; Seshan K. ; Lefferts L. Ind. Eng. Chem. Res 2007, 46 (12), 3968.
16 Huang Z. M. ; Zhang Y. Z. ; Kotaki M. ; Ramakrishna S. Compos. Sci. Technol 2003, 63 (15), 2223.
17 Jung M. J. ; Jeong E. ; Kim Y. ; Lee Y. S. J. Ind. Eng. Chem 2013, 19 (4), 1315.
18 Kim B. H. ; Yang K. S. J. Electroanal. Chem 2014, 714, 92.
19 Park G. S. ; Lee J. S. ; Kim S. T. ; Park S. ; Cho J. J. Power Sources 2013, 243, 267.
20 Hang Z. S. ; Tan L. H. ; Cao X. M. ; Ju F. Y. ; Ying S. J. ; Xu F. M. Mater. Lett 2011, 65 (7), 1079.
21 Kim B. H. ; Yang K. S. J. Ind. Eng. Chem 2014, 20 (5), 3474.
22 Hang Z. S. ; Tan L. H. ; Ju F. Y. ; Zhou B. ; Ying S. J. J. Anal. Sci 2011, 27 (3), 279.
22 杭祖圣; 谈玲华; 居法银; 周斌; 应三九. 分析科学学报, 2011, 27 (3), 279.
23 Yuan B. ; Zheng X. Y. ; Zhang C. ; Lu W. ; Li B. H. ; Yang Q. H. New Carbon Materials 2014, 29 (6), 426.
24 Wu H. ; Hu L. ; Rowell M. W. ; Kong D. ; Cha J. J. ; McDonough J. R. ; Zhu J. ; Yang Y. ; McGehee M. D. ; Cui Y. Nano Lett 2010, 10 (10), 4242.
25 Qiu Y. J. ; Yu J. ; Shi T. G. ; Zhou X. S. ; Bai X. D. ; Huang J. Y. J. Power Sources 2011, 196, 9862.
26 Sun L. ; Tian C. G. ; Fu Y. ; Yang Y. ; Yin J. ; Wang L. ; Fu H. G. ; Chem Eur J. Chem. Eur. J 2014, 20, 564.
27 Nan D. ; Huang Z. H. ; Lv R. T. ; Yang L. ; Wang J. G. ; Shen W. C. ; Lin Y. X. ; Yu X. L. ; Ye L. ; Sun H. Y. ; Kang F. Y. J. Mater. Chem. A 2014, 2, 19678.
28 Li M. ; Xue J. J. Phys. Chem. C 2014, 118 (5), 2507.
29 Muhammad T. ; Chuan B. C. ; Nasir M. ; Faheem K. B. ; Asif M. ; Faryal I. ; Sajad H. M. T. ; Zulfiqar A. ; Imran A. ACS Appl. Mater. Interfaces 2014, 6, 1258.
30 Ya M. ; Hui D. ; Bin X. ; Lin Z. ; Yong S. H. ; Chang C. X. Energy Environ. Sci 2012, 5 (7), 7950.
31 Chuan G. H. ; Qing H. ; Fei Z. ; Zi Y. Y. ; Nan C. ; Liang T. Q. Nanoscale 2013, 5, 2726.
32 An G. H. ; Ahn H. J. Carbon 2013, 65, 87.
33 Wang Y. ; Serrano S. ; Santiago-Aviles J. J. Synthetic Metals 2003, 138 (3), 423.
34 Lu J. W. ; Ren X. Z. ; Chen Y. Z. ; Dong M. ; Zhang Z. P. ; Yu J. ; Guo C. Y. ; Chem J. Chin. Univ 2008, 29 (9), 1870.
34 陆建巍; 任祥忠; 陈艺章; 董穆; 张展鹏; 于建; 郭朝霞. 高等学校化学学报, 2008, 29 (9), 1870.
35 Yang X. ; Wu D. ; Chen X. ; Fu R. J. Phys. Chem. C 2010, 114 (18), 8581.
36 Su F. ; Poh C. K. ; Chen J. S. ; Xu G. ; Wang D. ; Li Q. ; Lin J. ; Lou X. W. Energy Environ. Sci 2011, 4 (3), 717.
37 Wen Z. ; Wang X. ; Mao S. ; Bo Z. ; Kim H. ; Cui S. ; Lu G. ; Feng X. ; Chen J. Adv. Mater 2012, 24 (41), 5610.
38 Xiao N. ; Lau D. ; Shi W. ; Zhu J. ; Dong X. ; Hng H. H. ; Yan Q. Carbon 2013, 57, 184.
39 Hassan F. M. ; Chabot V. ; Li J. ; Kim B. K. ; Ricardez-Sandoval L. ; Yu A. J. Mater. Chem. A 2013, 1 (8), 2904.
40 Li Z. P. ; Zhao J. G. ; Wen Y. Q. ; Li J. ; Xing B. Y. ; Guo Y. Chem. Ind. Eng. Prog 2012, 31 (8), 1631.
40 李作鹏; 赵建国; 温雅琼; 李江; 邢宝岩; 郭永. 化工进展, 2012, 31 (8), 1631.
[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[5] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[6] Li WANG,He-Xia SHI,Wen-Yuan WANG,Hong SHI,Xiang SHAO. Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 393-398.
[7] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[8] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[9] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[10] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[11] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[12] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[13] Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 481-492.
[14] You-Cheng LIN,Xin-Xian ZHONG,Han-Xing HUANG,Hong-Qiang WANG,Qi-Peng FENG,Qing-Yu LI. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 474-480.
[15] Ya-Jie LI,Xing-Yuan NI,Jun SHEN,Dong LIU,Nian-Ping LIU,Xiao-Wei ZHOU. Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 493-502.