Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (11): 2151-2157    DOI: 10.3866/PKU.WHXB201510083
CATALYSIS AND SURFACE SCIENCE     
Growth, Electronic Structure and Thermal Stability of Ni on ZrO2(111) Thin Film Surfaces
Yong. HAN,Qian. XU,Huan-Xin. JU,Jun-Fa. ZHU*()
Download: HTML     PDF(2924KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The growth mode, electronic structure, and thermal stability of Ni nanoparticles on thin ZrO2(111) film surfaces were investigated using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. Stoichiometric ZrO2(111) thin films with thickness of 3 nm were epitaxially grown on a Pt(111) single-crystal surface. The results indicate that the growth of Ni vapor deposited on thin ZrO2(111) films follows two-dimensional growth up to 0.5 ML (monolayer), followed by threedimensional growth (i.e., the Stranski-Krastanov growth mode). The Ni 2p3/2 binding energy (BE) increases with decreasing Ni coverage. We used the Auger parameter method to differentiate the contributions to this BE shift from the initial-state and final-state effects. The main contribution to the Ni 2p core level BE shift is made by the final-state effect. However, at low Ni coverages, the initial-state effect also contributes. This suggests that at the initial stage of Ni growth on the ZrO2(111) surface, Ni and ZrO2 interact strongly, leading to charge transfer from Ni to the ZrO2 substrate, with the appearance of partially positively charged Niδ+. Thermal stability studies of Ni/ZrO2(111) model catalysts with two different coverages (0.05 and 0.5 ML) indicate further oxidation of Ni to Ni2+ and concurrent diffusion of Ni into the ZrO2 substrate at elevated temperatures. These findings provide an atomic-level fundamental understanding of the interactions between Ni with ZrO2, which is essential for identifying the structures of real ZrO2-supported Ni catalysts.



Key wordsNickel      Zirconia      Model catalyst      X-ray photoelectron spectroscopy      Ultraviolet photoelectron spectroscopy     
Received: 06 August 2015      Published: 08 October 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(U1232102, 21403205);National Key Basic Research Programof China (973)(2013CB834605)
Corresponding Authors: Jun-Fa. ZHU     E-mail: jfzhu@ustc.edu.cn
Cite this article:

Yong. HAN,Qian. XU,Huan-Xin. JU,Jun-Fa. ZHU. Growth, Electronic Structure and Thermal Stability of Ni on ZrO2(111) Thin Film Surfaces. Acta Physico-Chimica Sinca, 2015, 31(11): 2151-2157.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510083     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I11/2151

Fig 1 Low energy electron diffraction (LEED) patterns at 66 eV for (a) clean Pt(111) and (b) ZrO2(111) thin film
Fig 2 Evolution of (a) Ni 2p and (b) O 1s and Zr 3d XPS spectra as a function of Ni coverage
Fig 3 Integrated intensities of Ni 2p3/2 (squares) and Zr 3d (points) versus coverage at room temperature (normalized to bulk Ni and clean ZrO2 film)
Fig 4 (a) Ni 2p3/2 core level binding energy; (b) Ni LMM Auger peak kinetic energy; (c) Ni Auger parameter; and (d) initial state and final state contributions to the Ni 2p3/2 core level binding energy shift as a function of Ni coverage
Fig 5 (a) Valence band and (b) change of work function (Δφ) versus Ni coverage
Fig 6 Ni 2p XPS spectra for (a) 0.05 ML and (b) 0.5 ML Ni/ZrO2(111) model catalysts at different annealing temperatures
Fig 7 Ni 2p spectra for 800 K annealed 0.5 ML Ni/ZrO2(111) model catalyst before (solid line) or after (circle) Ar+ sputtering
1 Campbell C. T. Surf. Sci. Rep 1997, 27, 1.
2 Kuhlenbeck H. ; Shaikhutdinov S. ; Freund H. J. Chem. Rev 2013, 113, 3986.
3 Campbell C. T. ; Sauer J. Chem. Rev 2013, 113, 6901.
4 Munoz M. C. ; Gallego S. ; Beltran J. I. ; Cerda J. Surf. Sci. Rep 2006, 61, 303.
5 Nakano Y. ; Iizuka T. ; Hattori H. ; Tanabe K. J. Catal 1979, 57, 1.
6 Han Y. ; Zhu J. F. Top. Catal 2013, 56, 1525.
7 Wei J. M. ; Xu B. Q. ; Li J. L. ; Cheng Z. X. ; Zhu Q. M. Appl. Catal. A-Gen 2000, 196, 167.
8 Li X. S. ; Chang J. S. ; Tian M. Y. ; Park S. E. Appl. Organomet. Chem 2001, 15, 109.
9 Xu B. Q. ; Wei J. M. ; Yu Y. T. ; Li J. L. ; Zhu Q. M. Top. Catal 2003, 22, 77.
10 Gonzalez-Delacruz V. M. ; Pere?guez R. ; Ternero F. ; Holgado J. P. ; Caballero A. ACS Catal 2011, 1, 82.
11 Campbell C. T. Nat. Chem 2012, 4, 597.
12 Kralik B. ; Chang E. K. ; Louie S. G. Phys. Rev. B 1998, 57, 7027.
13 Gao Y. ; Zhang L. A. ; Pan Y. H. ; Wang G. D. ; Xu Y. ; Zhang W. H. ; Zhu J. F. Chin. Sci. Bull 2011, 56, 502.
14 Zhou Y. H. ; Zhou J. J. Phys. Chem. C 2012, 116, 9544.
15 Memeo R. ; Ciccacci F. ; Mariani C. ; Ossicini S. Thin Solid Films 1983, 109, 159.
16 Zhu J. F. ; Farmer J. A. ; Ruzycki N. ; Xu L. ; Campbell C. T. ; Henkelman G. J. Am. Chem. Soc 2008, 130, 2314.
17 Tanuma S. ; Powell C. J. ; Penn D. R. Surf. Interface Anal 1991, 17, 911.
18 Kong D. D. ; Wang G. D. ; Pan Y. H. ; Hu S. W. ; Hou J. B. ; Pan H. B. ; Campbell C. T. ; Zhu J. F. J. Phys. Chem. C 2011, 115, 6715.
19 Onishi H. ; Aruga T. ; Egawa C. ; Iwasawa Y. Surf. Sci 1990, 233, 261.
20 Wu M. C. ; Mø ler P. J. Surf. Sci 1992, 279, 23.
21 Sotiropoulou D. ; Ladas S. Surf. Sci 1998, 408, 182.
22 Zafeiratos S. ; Kennou S. Surf. Sci 2003, 532, 402.
23 Chatain D. ; Rivollet I. ; Eustathopoulos N. J. Chim. Phys. Phys.-Chim. Biol 1987, 84, 201.
24 Mason M. G. Phys. Rev. B 1983, 27, 748.
25 Parmigiani F. ; Kay E. ; Bagus P. S. ; Nelin C. J. J. Electron Spectrosc. Relat. Phenom 1985, 36, 257.
26 Bagus P. S. ; Brundle C. R. ; Pacchioni G. ; Parmigiani F. Surf. Sci. Rep 1993, 19, 265.
27 Zafeiratos S. ; Kennou S. Surf. Sci 1999, 443, 238.
28 Wagner C. D. Anal. Chem 1972, 44, 967.
29 Wagner C. D. Anal. Chem 1975, 47, 1201.
30 Wagner C. D. ; Gale L. H. ; Raymond R. H. Anal. Chem 1979, 51, 466.
31 Krakauer H. ; Freeman A. J. ; Wimmer E. Phys. Rev. B 1983, 28, 610.
32 Zhang L. ; Persaud R. ; Madey T. E. Phys. Rev. B 1997, 56, 10549.
33 Rodriguez J. A. ; Kuhn M. ; Hrbek J. J. Phys. Chem 1996, 100, 18240.
34 Libuda J. ; Frank M. ; Sandell A. ; Andersson S. ; Brüwiler P. A. ; Bämer M. ; Måtensson N. ; Freund H. J. Surf. Sci 1997, 384, 106.
35 Bämer M. ; Biener J. ; Madix R. J. Surf. Sci 1999, 432, 189.
36 Fu Q. ; Wagner T. Surf. Sci. Rep 2007, 62, 431.
37 Sam J. M. ; Gonzalez-Elipe A. R. ; Fernandez A. ; Leinen D. ; Galan L. ; Stampfl A. ; Bradshaw A. M. Surf. Sci 1994, 307, 848.
38 Morant C. ; Fernandez A. ; Gonzalezelipe A. R. ; Soriano L. ; Stampfl A. ; Bradshaw A. M. ; Sanz J. M. Phys. Rev. B 1995, 52, 11711.
39 Kołczkiewicz J. ; Bauer E. Surf. Sci 1984, 144, 495.
40 Kołczkiewicz J. ; Bauer E. Surf. Sci 1986, 175, 508.
41 Khyzhun O. ; Sygellou L. ; Ladas S. J. Phys. Chem. B 2005, 109, 2302.
42 Zhou J. ; Ma S. ; Kang Y. C. ; Chen D. A. J. Phys. Chem. B 2004, 108, 11633.
43 Ozturk O. ; Park J. B. ; Black T. J. ; Rodriguez J. A. ; Hrbek J. ; Chen D. A. Surf. Sci 2008, 602, 3077.
44 Senanayake S. D. ; Evans J. ; Agnoli S. ; Barrio L. ; Chen T. L. ; Hrbek J. ; Rodriguez J. A. Top. Catal 2011, 54, 34.
[1] Ming-Hui HUANG,Bi-Yao JIN,Lian-Hua ZHAO,Shi-Gang SUN. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 563-572.
[2] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 386-392.
[3] Xiao-Ning ZHANG,Valerie HOLLIMON,DaShan BRODUS. A Method for Attaching Thiol Groups Directly on a Silicon (111) Substrate[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2364-2368.
[4] Xiu-Neng SONG,Guang-Wei WANG,Yan CHANG,Yong MA,Chuan-Kui WANG. Theoretical Study on X-Ray Spectroscopy of 1, 1, 2, 3, 4, 5-Hexaphenylsilole[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 943-949.
[5] Liang YU,Fang-Yong YU,Li-Li YUAN,Wei-Zi CAI,Jiang LIU,Cheng-Hao YANG,Mei-Lin LIU. Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 503-509.
[6] Wang-Xin NIE,Xiu-Jing ZOU,Xue-Guang WANG,Wei-Zhong DING,Xiong-Gang LU. Preparation of Highly Dispersed Ni-Ce-Zr Oxides over Mesoporous γ-Alumina and Their Catalytic Properties for CO2 Methanation[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2803-2810.
[7] Yu WU,Jian LUO. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2745-2752.
[8] Wei-Xin HUANG,Kun QIAN,Zong-Fang WU,Shi-Long CHEN. Structure-Sensitivity of Au Catalysis[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 48-60.
[9] Li WANG,Hong SHI,Hui-Hui LIU,Xiang SHAO,Kai WU. STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 183-194.
[10] ZHONG Jing-Rong, SHAO Lang, YU Chun-Rong, REN Yi-Ming. Study of Thermal Chemical Reactio[J]. Acta Physico-Chimica Sinca, 2015, 31(Suppl): 25-31.
[11] CHEN Jun-Jie, XIAO Qian, Lü Zhan-Peng, AHSAN Ejaz, XIA Xiao-Feng, LIU Ting-Guang. Effects of Sulfate Ions on Anodic Dissolution and Passivity of Iron in Slightly Alkaline Solutions[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1093-1104.
[12] Feng. CHEN,Bi-Chun. HUANG,Ying-Xin. YANG,Xiao-Qing. LIU,Cheng-Long. YU. Synthesis, Characterization and NH3-SCR Activity of MnSAPO-34 Molecular Sieves[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2375-2385.
[13] MA Yi-Ran, ZHOU Wei, CAO Wei, ZHENG Jin-Long, GUO Lin. Preparation of Hierarchical Ni@CuS Composites and the Application of the Enhanced Catalysis for 4-Nitrophenol Reduction[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1949-1955.
[14] JIANG Jun, LI Gang, KONG Ling-Hao. Hydrogenation of Nitrobenzene Catalyzed by Metal-Organic Framework-Supported Ni Nanoparticles[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 137-144.
[15] YI Chao, XIONG Xin-Bo, ZOU Zhi-Biao, LI Jun-Jie, HUANG Tuo, LI Bin, MA Jun, ZENG Xie-Rong. Fabrication of Nickel-Based Composite Film Electrode for Supercapacitors by a New Method of Anodization/GCD[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 99-104.