Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (11): 2158-2164    DOI: 10.3866/PKU.WHXB201510091
CATALYSIS AND SURFACE SCIENCE     
Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents
Jian-Dong. XING1,2,Fang-Li. JING1,2,Wei. CHU1,2,*(),Hong-Li. SUN1,Lei. YU1,Huan. ZHANG1,Shi-Zhong. LUO1,*()
1 School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, P. R. China
Download: HTML     PDF(6321KB) Export: BibTeX | EndNote (RIS)      

Abstract  

CeO2 promoted CuCl/activated carbon (AC) adsorbents were prepared using an incipient wetness impregnation method, and characterized using N2 adsorption/desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The Cu(II) on the AC surface was reduced to Cu(I) when calcination was performed in a nitrogen flow. The effects of Ce on the C2H4/C2H6 adsorptive separation performance were investigated. The adsorption isotherms showed that the addition of CeO2 improved the separation performance by decreasing the C2H6 adsorption capacity compared with that of the nonpromoted sample. The XRD and XPS results indicated that the active crystal particles on the AC surface became smaller, leading to higher dispersion and a higher degree of Cu(II) reduction. The best adsorption selectivity was obtained using the 5Ce50Cu [CeO2 and CuCl2 mass fractions (w) 5% and 50%, respectively] sample, i.e., with CeO2 in the adsorbent; the adsorption selectivity increased from 4.2 to 8.7 at 660 kPa compared with that of the 50Cu sample.



Key wordsC2H4      Pressure swing adsorption      Adsorption selectivity      CeO2 promoter      Cu(I) active site      Surface characterization     
Received: 10 July 2015      Published: 09 October 2015
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21476145)
Corresponding Authors: Wei. CHU,Shi-Zhong. LUO     E-mail: chuwei1965scu@163.com;luosz@scu.edu.cn
Cite this article:

Jian-Dong. XING,Fang-Li. JING,Wei. CHU,Hong-Li. SUN,Lei. YU,Huan. ZHANG,Shi-Zhong. LUO. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents. Acta Physico-Chimica Sinca, 2015, 31(11): 2158-2164.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510091     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I11/2158

Fig 1 (a) C2H4 adsorption isotherms on different adsorbents, (b) C2H6 adsorption isotherms on different adsorbents, (c) C2H4/C2H6 adsorption selectivity calculated by the Langmuir model fitting data
Sample C2H4 adsorption isotherms C2H6 adsorption isotherms
qm/(mL•g–1) 10–3b/kPa–1 R2 qm/(mL•g–1) 10–3b/kPa–1 R2
50Cu 38.496 9.285 0.9987 14.076 1.873 0.9836
2Ce50Cu 38.319 7.923 0.9995 16.107 1.668 0.9940
5Ce50Cu 29.844 8.291 0.9996 4.878 2.164 0.9855
8Ce50Cu 32.772 5.076 0.9995 9.753 0.973 0.9826
10Ce50Cu 32.383 5.207 0.9988 11.580 0.891 0.9934
5Ce 78.167 5.416 0.9999 78.846 4.259 0.9996
Table 1 Langmuir parameters of equilibrium isotherms obtained from the Langmuir model
Fig 2 (a) N2 adsorption/desorption isotherms (77 K) of the samples and (b) the pore size distributions obtained from the DFT equation
Sample Specific surface area/(m2•g–1) 103 Pore volume/(cm3•g–1) Average pore diameter/nm
as-made 50Cu 22.88 28.70 6.38
50Cu 25.12 40.08 5.02
as-made 5Ce50Cu 14.08 25.47 7.23
5Ce50Cu 19.42 30.80 6.34
AC 677.60 397.50 2.35
Table 2 2 Textural properties obtained by N2 adsorption analyses of the samples
Fig 3 XRD patterns of the samples
Sample (111) reflection (220) reflection
Crystallite size/nm Peak FWHM/(°) Crystallite size/nm Peak FWHM/(°)
50Cu 33.4 0.265 34.8 0.269
5Ce50Cu 25.6 0.335 28.6 0.319
FWHM: full width at half maximum
Table 3 crystallite size of 50Cu and 5Ce50Cu samples
Fig 4 Cu 2p3/2 XPS spectra of (a) 50Cu and (b) 5Ce50Cu samples
Fig 5 SEM images of (a) 50Cu and (b) 5Ce50Cu
Fig 6 EDX mappings on (a) Cu element, (b) Ce element, and (c) Cu+Ce elements for the 5Ce50Cu adsorbent
1 Bloch E. D. ; Queen W. L. ; Krishna R. ; Zadrozny J. M. ; Brown C. M. ; Long J. R. Science 2012, 335 (6076), 1606.
2 Shi M. ; Lin C. C. H. ; Kuznicki T. M. ; Hashisho Z. ; Kuznicki S. M. Chem. Eng. Sci 2010, 65 (11), 3494.
3 Narin G. ; Martins V. F. D. ; Campo M. ; Ribeiro A. M. ; Ferreira A. ; Santos J. C. ; Schumann K. ; Rodrigues A. E. Sep. Purif. Technol 2014, 133, 452.
4 Duan X. ; Zhang Q. ; Cai J. ; Yang Y. ; Cui Y. ; He Y. ; Wu C. ; Krishna R. ; Chen B. ; Qian G. J. Mater. Chem. A 2014, 2, 2628.
5 Gucuyener C. ; van den Bergh J. ; Gascon J. ; Kapteijn F. J. Am. Chem. Soc 2010, 132 (50), 17704.
6 Li J. ; Fu H. R. ; Zhang J. ; Zheng L. S. ; Tao J. Inorg. Chem 2015, 54 (7), 3093.
7 Bao Z. B. ; Alnemrat S. ; Yu L. ; Vasiliev I. ; Ren Q. L. ; Lu X. Y. ; Deng S. G. Langmuir 2011, 27 (22), 13554.
8 Geier S. J. ; Mason J. A. ; Bloch E. D. ; Queen W. L. ; Hudson M. R. ; Brown C. M. ; Long J. R. Chem. Sci 2013, 4 (5), 2054.
9 Wu X. F. ; Bao Z. B. ; Yuan B. ; Wang J. ; Sun Y. Q. ; Luo H. M. ; Deng S. G. Microporous Mesoporous Mat 2013, 180, 114.
10 Ma D. Y. ; Li Y. W. ; Li Z. Chem. Commun 2011, 47 (26), 7377.
11 Kusgens P. ; Rose M. ; Senkovska I. ; Frode H. ; Henschel A. ; Siegle S. ; Kaskel S. Microporous Mesoporous Mat 2009, 120, 325.
12 Luo J. J. ; Liu Y. F. ; Sun W. J. ; Jiang C. F. ; Xie H. P. ; Chu W. Fuel 2014, 123, 241.
13 Policicchio A. ; Maccallini E. ; Agostino R. G. ; Ciuchi F. ; Aloise A. ; Giordano G. Fuel 2013, 104, 813.
14 Anson A. ; Wang Y. ; Lin C. C. H. ; Kuznicki T. M. ; Kuznicki S. M. Chem. Eng. Sci 2008, 63 (16), 4171.
15 Anson A. ; Lin C. C. H. ; Kuznicki T. M. ; Kuznicki S. M. Chem. Eng. Sci 2010, 65 (2), 807.
16 Feng Y. Y. ; Yang W. ; Chu W. Chin. Phys. B 2014, 23 (10), 8.
17 Sun W. J. ; Feng Y. Y. ; Jiang C. F. ; Chu W. Fuel 2015, 155, 7.
18 Luo J. J. ; Liu Y. F. ; Jiang C. F. ; Chu W. ; Wen J. ; Xie H. P. J. Chem. Eng. Data 2011, 56 (12), 4919.
19 Costa E. ; Calleja G. ; Marron C. ; Jimenez A. ; Pau J. J. Chem. Eng. Data 1989, 34 (2), 156.
20 Choi B. U. ; Choi D. K. ; Lee Y. W. ; Lee B. K. ; Kim S. H. J. Chem. Eng. Data 2003, 48 (3), 603.
21 Huang H. Y. ; Padin J. ; Yang R. T. Ind. Eng. Chem. Res 1999, 38 (7), 2720.
22 Jiang W. J. ; Sun L. B. ; Yin Y. ; Song X. L. ; Liu X. Q. Sep. Sci. Technol 2013, 48, 968.
23 Li B. Y. ; Zhang Y. M. ; Krishna R. ; Yao K. X. ; Han Y. ; Wu Z. L. ; Ma D. X. ; Shi Z. ; Pham T. ; Space B. ; Liu J. ; Thallapally P. K. ; Liu J. ; Chrzanowski M. ; Ma S. Q. J. Am. Chem. Soc 2014, 136 (24), 8654.
24 Yu C. ; Cowan M. G. ; Noble R. D. ; Zhang W. Chem. Commun 2014, 50 (43), 5745.
25 Qin J. X. ; Wang Z. M. ; Liu X. Q. ; Li Y. X. ; Sun L. B. J. Mater. Chem. A 2015, 3, 12247.
26 Jiang W. J. ; Yin Y. ; Liu X. Q. ; Yin X. Q. ; Shi Y. Q. ; Sun L. B. J. Am. Chem. Soc 2013, 135 (22), 8137.
27 Cowan M. G. ; McDanel W. M. ; Funke H. H. ; Kohno Y. ; Gin D. L. ; Noble R. D. Angew. Chem. Int. Edit 2015, 54 (19), 5740.
28 Wang K. ; Li X. J. ; Ji S. F. ; Shi X. J. ; Tang J. J. Energy Fuels 2009, 23, 25.
29 Ren H. P. ; Song Y. H. ; Wang W. ; Chen J. G. ; Cheng J. ; Jiang J. Q. ; Liu Z. T. ; Liu Z. W. ; Hao Z. P. ; Lu J. Chem. Eng. J. Chem. Eng. J 2015, 259, 581.
30 Wang N. ; Shen K. ; Huang L. H. ; Yu X. P. ; Qian W. Z. ; Chu W. ACS Catal 2013, 3 (7), 1638.
31 Liu J. X. ; Jiang X. M. ; Huang X. Y. ; Wu S. H. Energy Fuels 2010, 24, 3072.
32 Feng Y. Y. ; Jiang C. F. ; Liu D. J. ; Chu W. J. Anal. Appl. Pyrolysis 2013, 104, 559.
33 Ahmed M. J. ; Theydan S. K. J. Porous Mat 2014, 21 (5), 747.
34 Hao S. X.. ; Wen J. ; Yu X. P. ; Chu W. Appl. Surf. Sci 2013, 264, 433.
35 Feng Y. Y. ; Yang W. ; Liu D. J. ; Chu W. Chin. J. Chem 2013, 31 (8), 1102.
36 Kruk M. ; Jaroniec M. Chem. Mat 2001, 13 (10), 3169.
37 Thommes M. Chem. Ing. Tech 2010, 82 (7), 1059.
38 Sing K. S. W. ; Williams R. T. Adsorpt. Sci. Technol 2004, 22 (10), 773.
39 Neimark A. V. ; Ravikovitch P. I. ; Vishnyakov A. Phys. Rev. E 2000, 62 (2), 1493.
40 Ravikovitch P. I. ; Neimark A. V. Colloid Surf. A-Physicochem. Eng. Asp 2001, 187, 11.
41 Ma J. H. ; Li L. ; Ren J. ; Li R. F. Sep. Purif. Technol 2010, 76, 89.
42 Zhang X. R. ; Shi P. F. J. Mol. Catal. A-Chem 2003, 194 (1), 99.
43 Jing F. L. ; Zhang Y. Y. ; Luo S. Z. ; Chu W. ; Zhang H. ; Shi X. Y. J. Chem. Sci 2010, 122 (4), 621.
44 Han T. ; Huang W. ; Wang X. D. ; Tang Y. ; Liu S. Q. ; You X. X. Acta Phys. -Chim. Sin 2014, 30 (11), 2127.
44 韩涛; 黄伟; 王晓东; 唐钰; 刘双强; 游向轩. 物理化学学报, 2014, 30 (11), 2127.
45 Xie X. X. ; Fei Z. Y. ; Zou C. ; Li Z. Z. ; Chen X. ; Tang J. H. ; Cui M. F. ; Qiao X. Acta Phys. -Chim. Sin 2015, 31 (6), 1153.
45 谢兴星; 费兆阳; 邹冲; 李郑州; 陈献; 汤吉海; 崔咪芬; 乔旭. 物理化学学报, 2015, 31 (6), 1153.
[1] LEI Guang-Ping, LIU Chao, XIE Hui. Molecular Simulation of Adsorption and Separation Performances for CO2/CH4 Mixtures in Graphene/Nanotube Hybrid Structures[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 660-666.
[2] ZHAO Hui-Min, LIN Dan, YANG Gang, CHUN Yuan, XU Qin-Hua. Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes[J]. Acta Physico-Chimica Sinca, 2012, 28(04): 985-992.
[3] PENG Xuan, ZHANG Qin-Xue, CHENG Xuan, CAO Da-Peng. Adsorption and Separation of CO2/CH4/N2 Binary Mixtures in an Ordered Mesoporous Carbon Material CMK-3[J]. Acta Physico-Chimica Sinca, 2011, 27(09): 2065-2071.
[4] YUE Qiao-Hong; SHAO Xiao-Hong; CAO Da-Peng. Separation of Hydrogen and Carbon Dioxide in Activated Mesocarbon Microbeads with High Specific Surface[J]. Acta Physico-Chimica Sinca, 2007, 23(07): 1080-1084.
[5] SUN Qi;ZHU Ai-Min;NIU Jin-Hai;XU Yong;SONG Zhi-Min. Plasma-induced Conversion of Nitrogen Oxides in a Dielectric Barrier Discharge Reactor[J]. Acta Physico-Chimica Sinca, 2005, 21(02): 192-196.