Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (12): 2341-2348    DOI: 10.3866/PKU.WHXB201510151
CATALYSIS AND SURFACE SCIENCE     
Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light
Zhi-Qiao. HE,Li-Li. TONG,Zhi-Peng. ZHANG,Jian-Meng. CHEN,Shuang. SONG*()
Download: HTML     PDF(5690KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The conversion of CO2 into organic compounds is a promising method to mitigate global warming and assist in sustaining energy resources. A series of plasmonic photocatalysts, comprised of Ag supported on Ag2WO4 (Ag/Ag2WO4) with different crystalline phases, are fabricated by a facile ion-exchange method and subsequent reduction with hydrazine hydrate. The catalysts are characterized using X-ray diffraction (XRD) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), UV-Vis absorption spectroscopy, and Brunauer-Emmett-Teller analyses. Compared with Ag2WO4, the Ag/Ag2WO4 exhibits a markedly improved quantum yield (QY), energy returned on energy invested (EROEI), and turnover number (TON) for CO2 reduction to CH4 under visible-light irradiation. Among Ag/α-Ag2WO4, Ag/β-Ag2WO4, and Ag/γ-Ag2WO4 catalysts, the highest activity for CO2 photoreduction to CH4 is obtained for Ag/β-Ag2WO4 with an actual molar composition of 4% Ag and 96% Ag2WO4. Correspondingly the QY, EROEI, TON, and pseudo first-order rate constant are 0.145%, 0.067%, 9.61, and 1.96×10-6 min-1, respectively. Moreover, the plasmonic Ag/Ag2WO4 photocatalysts are stable after repeated reaction cycles under visible-light irradiation. It is proposed that the localized surface plasma resonance effect of surfacedeposited Ag contributed to the enhanced activities and stabilities of the Ag/Ag2WO4 photocatalysts.



Key wordsPhotolysis      Carbon dioxide reduction      Methane      Silver tungstate      Localized surface plasma resonance     
Received: 31 July 2015      Published: 15 October 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21477117, 21177115);Zhejiang Provincial Natural ScienceFoundation of China(LR13B070002, LR14E080001)
Corresponding Authors: Shuang. SONG     E-mail: ss@zjut.edu.cn
Cite this article:

Zhi-Qiao. HE,Li-Li. TONG,Zhi-Peng. ZHANG,Jian-Meng. CHEN,Shuang. SONG. Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light. Acta Phys. -Chim. Sin., 2015, 31(12): 2341-2348.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510151     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I12/2341

Fig 1 XRD patterns of Ag2WO4 and 4%-Ag/Ag2WO4 (a) α-Ag2WO4; (b) 4%-Ag/α-Ag2WO4; (c) β-Ag2WO4; (d) 4%-Ag/β-Ag2WO4; (e) γ-Ag2WO4; (f) 4%-Ag/γ-Ag2WO4; (g) JCPDS 34-0061; (h) JCPDS 33-1195; (i) JCPDS 33-1197
Fig 2 SEM images of 4%-Ag/α-Ag2WO4, 4%-Ag/β-Ag2WO4, and 4%-Ag/γ-Ag2WO4
Fig 3 EDS result of 4%-Ag/β-Ag2WO4
Fig 4 UV-Vis absorption spectra of Ag2WO4 and 4%-Ag/Ag2WO4
Fig 5 XPS patterns of photocatalyst samples (a) wide-scan XPS; Ag 3d XPS spectra of (b) 4%-Ag/α-Ag2WO4, (c) 4%-Ag/β-Ag2WO4, (d) 4%-Ag/γ-Ag2WO4
Fig 6 Time dependence of CH4 yields over Ag/Ag2WO4 with different Ag loads (a) Ag/α-Ag2WO4; (b) Ag/β-Ag2WO4; (c) Ag/γ-Ag2WO4.Ag2WO4; 0.5%-Ag2WO4; 2%-Ag/Ag2WO4; 4%-Ag/Ag2WO4; 6%-Ag/Ag2WO4
Fig 7 Time dependence of CH4 yields over Ag2WO4 and 4%-Ag/Ag2WO4 for reduction of CO2 under visible light
Sample SBET/(m2·g1) TON QY/% EROEI/% 107k/min–1
α-Ag2WO4 4.41 4.46 0.072 0.033 9.74
β-Ag2WO4 0.77 6.46 0.098 0.045 13.2
γ-Ag2WO4 0.69 3.63 0.057 0.026 7.71
4%-Ag/α-Ag2WO4 4.41 7.92 0.128 0.059 17.4
4%-Ag/β-Ag2WO4 0.77 9.61 0.145 0.067 19.6
4%-Ag/γ-Ag2WO4 0.69 7.69 0.121 0.056 16.3
TON: usually defined by the ratio of the number of reactant molecules (CH4) to the number of active sites; QY: quantified as the ratio of moles of electrons reacted over the moles of incident photons; EROEI: quantified as the ratio of enthalpy change (ΔH) stored in the product molecules (CH4)over the energy of the photons employed; k: a pseudo first-order rate constant
Table 1 Summary of physicochemical parameters of Ag2WO4 and 4%-Ag/Ag2WO4
Fig 8 Cyclic experiments for CO2 reduction to CH4 over the photocatalysts  α-Ag2WO4; β-Ag2WO4; γ-Ag2WO4; 4%-Ag/α-Ag2WO4; 4%-Ag/β-Ag2WO4; 4%-Ag/γ-Ag2WO4
Fig 9 Comparison of the absorption spectra and plots of QY as a function of the wavelength of monochromatic light for the 4%-Ag/Ag2WO4 photocatalysts (a) 4%-Ag/α-Ag2WO4; (b) 4%-Ag/β-Ag2WO4; (c) 4%-Ag/γ-Ag2WO4
1 Zhang Q. H. ; Han W. D. ; Hong Y. J. ; Yu J. G. Catal. Today 2009, 148, 335.
2 Cheng H. ; Huang B. ; Dai Y. Nanoscale 2014, 6, 2009.
3 Habisreutinger S. N. ; Schmidt-Mende L. ; Stolarczyk J. K. Angew. Chem. Int. Edit 2013, 52, 7372.
4 Zhang L. ; Zhu Y. Catal. Sci. Technol 2012, 2, 694.
5 Dong F. ; Huang Y. ; Zou S. ; Liu J. ; Lee S. J. Phys. Chem. C 2011, 115, 241.
6 Tong W. ; Li L. ; Hu W. ; Yan T. ; Li G. J. Phys. Chem. C 2010, 114, 1512.
7 Fu H. ; Lin J. ; Zhang L. ; Zhu Y. Appl. Catal. A: Gen 2006, 306, 58.
8 Montini T. ; Gombac V. ; Hameed A. ; Felisari L. ; Adami G. ; Fornasiero P. Chem. Phys. Lett 2010, 498, 113.
9 Shan Z. ; Wang Y. ; Ding H. ; Huang F. J. Mol. Catal. A 2009, 302, 54.
10 Li X. J. ; Sheng J. Y. ; Chen H. H. ; Xu Y. M. Acta Phys. -Chim. Sin 2015, 31, 540.
10 李晓金; 盛珈怡; 陈海航; 许宜铭. 物理化学学报, 2015, 31, 540.
11 vanden Berg A. J. ; Juffermans C. A. H. J.Appl. Crystallogr 1982, 15, 114.
12 Awazu K. ; Fujimaki M. ; Rockstuhl C. ; Tominaga J. ; Murakami H. ; Ohki Y. ; Yoshida N. ; Watanabe T. J.Am. Chem. Soc 2008, 130, 1676.
13 Wang C. J. ; Ranasingha O. ; Natesakhawat S. ; Ohodnicki P. R. ; Jr. ; Andio M. ; Lewisac J. P. ; Matranga C. Nanoscale 2013, 5, 6968.
14 Li J. J. ; Li Y. ; Wang A. L. ; Qu Y. R. ; Yue B. ; Zhou D. ; Chu H. B. ; Zhao Y. L. Acta Phys. -Chim. Sin 2014, 30, 2328.
14 李晶晶; 栗源; 王爱玲; 屈燕荣; 岳彬; 周丹; 褚海斌; 赵永亮. 物理化学学报, 2014, 30, 2328.
15 Yu C. L. ; Cao F. F. ; Shu Q. ; Bao Y. L. ; Xie Z. P. ; Jimmy Y. ; Yang K. Acta Phys. -Chim. Sin 2012, 28, 647.
15 余长林; 操芳芳; 舒庆; 包玉龙; 谢志鹏; YUJimmy.; 杨凯. 物理化学学报, 2012, 28, 647.
16 Zhu M. S. ; Chen P. L. ; Liu M. H. Prog. Chem 2013, 25, 209.
16 朱明山; 陈鹏磊; 刘鸣华. 化学进展, 2013, 25, 209.
17 Chen H. H. ; Xu Y. M. Appld. Surf. Sci 2014, 319, 319.
18 He Z. Q. ; Wang D. ; Fang H. Y. ; Chen J. M. ; Song S. Nanoscale 2014, 6, 1.
19 Sarkar D. ; Chattopadhyay K. K. ACS Appl. Mater. Inter 2014, 6, 1004.
20 Liu H. ; Shon H. K. ; Sun X. ; Vigneswaran S. ; Nan H. Appl. Surf. Sci 2011, 257, 5813.
21 Cushing S. K. ; Li J. ; Meng F. ; Senty T. R. ; Suri S. ; Zhi M. ; Li M. ; Bristow A. D. ; Wu N. J.Am. Chem. Soc 2012, 134, 15033.
22 Wang P. ; Huang B. ; Lou Z. ; Zhang X. ; Qin X. ; Dai Y. ; Zheng Z. ; Wang X. Chem. -Eur. J 2010, 16, 538.
23 Shah M. S. A. S. ; Nag M. ; Kalagara T. ; Singh S. ; Manorama S. V. Chem. Mater 2008, 20, 2455.
24 Cavalcante L. S. ; Almeida M. A. P. ; Avansi W. ; Jr. ; Tranquilin R. L. ; Longo E. ; Batista N. C. ; Mastelaro V. R. ; Li M. S. Inorg. Chem 2012, 51, 10675.
25 Longo V. M. ; De Foggi C. C. ; Ferrer M. M. ; Gouveia A. F. ; Andre R. S. ; Avansi W. ; Vergani C. E. ; Machado A. L. ; Andres J. ; Cavalcante L. S. ; Hernandes A. C. ; Longo E. J. Phys. Chem. A 2014, 118, 5769.
26 Hou W. B. ; Cronin S. B. Adv. Funct. Mater 2013, 23, 1612.
27 Li J. ; Cushing S. K. ; Bright J. ; Meng F. ; Senty T. R. ; Zheng P. ; Bristow A. D. ; Wu N. ACS Catal 2012, 3, 47.
28 Dimitrijevic N. M. ; Vijayan B. K. ; Poluektov O. G. ; Rajh T. ; Gray K. A. ; He H. ; Zapol P. J. Am. Chem. Soc 2011, 133, 3964.
[1] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[2] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[3] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[4] Hai-Xia LI,Yan-Cheng LIU,Rui-Zhi TANG,Peng ZHANG,Liu-Kui MA,Chi-Yuan WEI,Wen-Feng WANG. Reactions of Triplet-State Difloxacin with Amino Acids and dGMP: A Laser Flash Photolysis Study[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1051-1056.
[5] Ya-Li WANG,Qi LI,Wei-Zheng WENG,Wen-Sheng XIA,Hui-Lin WAN. Catalytic Behaviors and Stability of Y2O3-Modified Ni/SiO2 for Partial Oxidation of Methane into Synthesis Gas[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2776-2784.
[6] WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng. Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1406-1412.
[7] HUANG Yan, FU Min, HE Tao. Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1145-1152.
[8] ZHANG Xiao-Qing, XU Yan YAN, YANG Chun-Hui, ZHANG Yan-Ping, YIN Yong-Xiang, SHANG Shu-Yong. In-situ Co-Precipitation of Ni-Mg-Al-LDH Catalytic Precursor on γ-Al2O3 for Dry Reforming of Methane: Synthesis and Evaluation[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 948-954.
[9] Hai-Yan. HAO,Zhen. LIU,Li-Li. ZU. Laser-Induced Fluorescence Spectra of the Photolyzed Products of C2H5SSC2H5 by 266 nm Laser[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2029-2035.
[10] HU Gui-Xiang, LUO Cheng-Cai, PAN Shan-Fei, JIANG Yong-Jun, ZOU Jian-Wei. Predicting Retention and Separation Factors of Chiral Diarylmethane Derivates by QSPR Models[J]. Acta Phys. -Chim. Sin., 2015, 31(1): 73-82.
[11] CHEN Shi-Ping, WANG Wei-Ming, LIU Ying-Wei, WEI Yu-Cai, YUAN Cheng-Long, FANG Wei-Ping, YANG Yi-Quan. Transition Metal Promoted ZSM-5 Catalysts for the Conversion of Dimethyl Sulfide into Methanethiol[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1148-1154.
[12] GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 723-728.
[13] LIU Xiao-Qiang, TIAN Zhi-Yue, CHU Wei, XUE Ying. CH4, CO2 and H2OAdsorption on Nonmetallic Atom-Decorated Graphene Surfaces[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 251-256.
[14] LI Hai-Xia, ZHOU Bao-Chang, LIU Yan-Cheng, TANG Rui-Zhi, ZHANG Peng, LI Jing-Ye, WANG Wen-Feng. Primary Photochemical Properties of Difloxacin in Neutral Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2134-2141.
[15] REN Xiu-Bin, ZHOU An-Ning, ZHANGJie-Bing. A Kinetic Monte Carlo Simulation on Forced Oscillations of Methane Partial Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2009-2014.