Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 2-13    DOI: 10.3866/PKU.WHXB201510192
PERSPECTIVE     
On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting
Xiao-Xia CHANG*(),Jin-Long GONG
Download: HTML     PDF(18184KB) Export: BibTeX | EndNote (RIS)      

Abstract  

One of the most appealing ways to resolve the worldwide energy crisis and environmental pollution is by converting solar energy into storable chemical energy as hydrogen through solar water splitting. The redox reactions of photogenerated charge carriers occurring on the surface of photocatalysts during the process of solar water splitting are particularly complex. Owing to the high reaction overpotentials and sluggish desorption kinetics of gas products, surface reaction is the rate-determining step in the solar water splitting process. Therefore, a great deal of attention has been focused on this specific research area. The recent advances and prospects for future directions regarding the importance of surface reactions for solar water splitting are presented. The main strategies to enhance the surface water splitting reaction kinetics are summarized. The roles and classifications of surface cocatalysts, as well as the effects of passivating the surface states and coating surface protective layers, are discussed by integrating the principles of photocatalysis. Prospects for the future development of surface reaction research are also proposed.



Key wordsPhotocatalytic water splitting      Surface reaction      Photocatalyst      Cocatalyst      Surface state      Protective layer     
Received: 01 September 2015      Published: 19 October 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(U1463205, 21222604, 51302185, 21525626)
Corresponding Authors: Xiao-Xia CHANG     E-mail: jlgong@tju.edu.cn
Cite this article:

Xiao-Xia CHANG,Jin-Long GONG. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting. Acta Phys. -Chim. Sin., 2016, 32(1): 2-13.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510192     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/2

Fig 1 Schematic illustration of different steps during photocatalytic water splitting
Fig 2 (a) Schematic reaction mechanism of overall water splitting on Rh/Cr2O3 loaded (Ga1–xZnx)(N1–xOx) composite15; (b) schematic photocatalytic H2 evolution and back-reaction processes on Pt and PtO loaded TiO2, respectively16; (c) schematic diagram of charge separation and H2 generation on TiO2/graphene/MoS219; (d) comparison of the photocatalytic H2 production activity by different photocatalysts19
Fig 3 (a) Energy diagram of Co-Pi/W:BiVO4 photoanode; (b) current–potential curves of W:BiVO4 photoanode before and after the deposition of Co-Pi23; (c) photocurrent curves and (d) stability of Ta3N5 based photoanodes with different cocatalysts for solar water oxidation24
Fig 4 (a) Separated Pt and IrO2 on the core/shell Ta3N5 photocatalyst as effective charge collectors28; (b) SEM image ofBiVO4 with Pt and MnOx deposited on {010} and {110} facets. The inset shows the schematic illustration of the structure29; (c) photocatalytic water oxidation activity of BiVO4 with cocatalysts deposited by different methods29
Fig 5 (a) HRTEM image and SAED patterns (inset) of rutile TiO2 nanowires (NWs) with 150 cycles of a TiO2 thin film using ALD (atomic layer deposition) method32; (b) photocurrent curves for 1.8 μm long TiO2 nanowire electrodes coated with various ALD cycles of TiO232; (c) band diagram and (d) photocurrent curves for water oxidation of α-Fe2O3 electrodes annealed at 500 and 800 ℃33
Fig 6 (a) Stability and (b) photoconversion efficiencies of planar and nanopillar p-InP electrodes protected by ALD-grown TiO2 and sputter-deposited Ru cocatalyst34; (c) model and stability of np+-Si photoanode protected by ALD-grown TiO2(44 nm)36; (d) model and stability of ZnO nanorod electrodes before and after protected by ALD-grown Ta2O537
ModificationPhotocatalystModifieraSynthesis methodConditionsbPerformancecRef.
loading cocatalysts HEC    
 TiO2PtchemicalUV-Vis;RH = 366711
  NireductionTEOA solutionRH = ~1160 
  Co  RH = 1160 
 TiO2PtOligands-assist chemical reductionUV-Vis and dark; methanol/waterunidirectional suppression of H2 oxidation16
 CdSWS2(1.0%(w))impregnationvisible light; 10% (volume fraction) lactic acid/waterRH was increased by 28 times17
  TiO25%graphene/95%MoS2hydrothermalUV light; 25% (volume fraction) ethanol/waterRH was increased by 39 times; quantum efficiency = 9.7% (365 nm)19
   OEC    
  β-Ge3N4RuO2(1%(w))impregnation450 W Hg lamp; aqueous solutionnon-oxide photocatalyst for overall water splitting21
BiVO4Co-PiphotoelectrodepositionAM 1.5G; 0.1 mol·L–1 KPi (pH 8)cathodic shift (440 mV) of onset potential23
BiVO4NiOOH/FeOOHphotoelectrodepositionAM 1.5G; 0.5 mol·L–1 phosphate buffer (pH 7)photocurrent of 2.73 mA·cm–2at 0.6 V (vs RHE)25
  HEC/OEC    
  Ta3N5Pt/CoOx(IrOx)impregnationvisible light; 25% (volume fraction) methanol/water for H2 evolution; 0.02 mol·L–1 AgNO3 for O2 evolutionRH = 171.9; RO = 1225028
  BiVO4Pt/MnOxphotodepositionvisible light; 0.02 mol·L–1 NaIO3RO = ~65029
passivating surface statesα-Fe2O3Al2O3ALDAM 1.5G; 1 mol·L–1 NaOH (pH 13.6)cathodic shift (100 mV) of onset potential; Photocurrent was increased by 3.5 times at 1.0 V (vs RHE)31
rutile TiO2epitaxial rutile TiO2ALDAM 1.5G; 1 mol·L–1 NaOH(pH 13.6)photocurrent was increased by 1.5 times at 1.5 V (vs RHE)32
α-Fe2O3annealing at 800 ℃; Co-Picalcination; PhotoelectrodepositionAM 1.5G; 1 mol·L–1 KOHphotocurrent onset potential of ~0.6 V (vs RHE)33
coating protective layersp-InPRu/TiO2ALDAM 1.5G; 1 mol·L–1 HClO4 (pH 0.5) (vs SCE)high stability; energy conversion efficiency of 14%34
np+-SiNi/TiO2ALD1.25 Sun; 0.93 V (vs SCE); 1 mol·L–1 KOHhigh stability during continuous OER operation of 100 h36
ZnOTa2O5ALDAM 1.5G; 1.23 V (vs RHE); 0.1 mol·L–1 KOHhigh stability for OER operation of 5 h37
Table 1 Examples of enhancing surface reaction for improved photocatalytic water splitting activity
Fig 7 (a) Photocurrent curves of BiVO4 photoanodes loading with different cocatalysts for water oxidation25; (b) photocurrent curves of BiVO4 photoanodes loading with CoOx cocatalysts and NiO layer for water oxidation41; (c) band diagram and mechanism of charge separation for p-n Co3O4/BiVO4 heterojunction (pH = 7)42; (d) photocurrent curves of BiVO4 and Co3O4/BiVO4 photoanodes for water oxidation42
1 Osterloh F. E. Chem. Soc. Rev. 2013, 42, 2294.
2 Das D. ; Veziroglu T. N. Int. J. Hydrog. Energy 2001, 26, 13.
3 Fujishima A. ; Honda K. Nature 1972, 238, 37.
4 Kudo A. ; Miseki Y. Chem. Soc. Rev. 2009, 38, 253.
5 Walter M. G. ; Warren E. L. ; McKone J. R. ; Boettcher S. W. ; Mi Q. ; Santori E. A. ; Lewis N. S. Chem. Rev. 2010, 110, 6446.
6 Kubacka A. ; Fernández-García M. ; Colón G. Chem. Rev. 2012, 112, 1555.
7 Ran J. R. ; Zhang J. ; Yu J. G. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2014, 43, 7787.
8 Valdés ; Á.; Brillet J. ; Grätzel M. ; Gudmundsdóttir H. ; Hansen H. A. ; Jónsson H. ; Klüpfel P. ; Kroes G. ; Le Formal F. ; Man I. C. ; Martins R. S. ; Nörskov J. K. ; Rossmeisl J. ; Sivula K. ; Vojvodic A. ; Zäch M. Phys. Chem. Chem. Phys. 2012, 14, 49.
9 Hope G. A. ; Bard A. J. J. Phys. Chem. 1983, 87, 1979.
10 Wu N. L. ; Lee M. S. Int. J. Hydrog. Energy 2004, 29, 1601.
11 Tran P. D. ; Xi L. ; Batabyal S. K. ; Wong L. H. ; Barber J. ; Loo J. S. C. Phys. Chem. Chem. Phys. 2012, 14, 11596.
12 Lin K. Y. ; Ma B. J. ; Su W. G. ; Liu W. Y. Science & Technology Review 2013, 31, 103.
12 林克英; 马保军; 苏暐光; 刘万毅. 科技导报, 2013, 31, 103.
13 Yamaguti K. ; Sato S. J. Chem. Soc. Faraday Trans. 1 1985, 81, 1237.
14 Abe R. ; Sayama K. ; Arakawa H. Chem. Phys. Lett. 2003, 371, 360.
15 Maeda K. ; Teramura K. ; Lu D. ; Saito N. ; Inoue Y. ; Domen K. Angew. Chem. 2006, 118, 7970.
16 Li Y. H. ; Xing J. ; Chen Z. J. ; Li Z. ; Tian F. ; Zheng L. R. ; Wang H. F. ; Hu P. ; Zhao H. J. ; Yang H. G. Nat. Commun. 2013, 4, 2500.
17 Zong X. ; Han J. ; Ma G. ; Yan H. ; Wu G. ; Li C. J. Phys. Chem. C 2011, 115, 12202.
18 Sun D. S. ; Fu B. Y. ; Yang W. L. ; Wang H. M. ; Tian M. K. Applied Chemical Industry 2015, 44, 720.
18 孙懂山; 付伯艳; 杨万亮; 王会敏; 田蒙奎. 应用化工, 2015, 44, 720.
19 Xiang Q. ; Yu J. ; Jaroniec M. J. Am. Chem. Soc. 2012, 134, 6575.
20 Artero V. ; Chavarot-Kerlidou M. ; Fontecave M. Angew. Chem. Int. Edit. 2011, 50, 7238.
21 Sato J. ; Saito N. ; Yamada Y. ; Maeda K. ; Takata T. ; Kondo J. N. ; Hara M. ; Kobayashi H. ; Domen K. ; Inoue Y. J. Am. Chem. Soc. 2005, 127, 4150.
22 Kanan M. W. ; Nocera D. G. Science 2008, 321, 1072.
23 Zhong D. K. ; Choi S. ; Gamelin D. R. J. Am. Chem. Soc. 2011, 133, 18370.
24 Liao M. ; Feng J. ; Luo W. ; Wang Z. ; Zhang J. ; Li Z. ; Yu T. ; Zou Z. Adv. Funct. Mater. 2012, 22, 3066.
25 Kim T. W. ; Choi K. S. Science 2014, 343, 990.
26 Maeda K. ; Lu D. ; Domen K. Chemistry 2013, 19, 4986.
27 Lee R. ; Tran P. D. ; Pramana S. S. ; Chiam S. Y. ; Ren Y. ; Meng S. ; Wong L. H. ; Barber J. Catal. Sci. Technol. 2013, 3, 1694.
28 Wang D. ; Hisatomi T. ; Takata T. ; Pan C. ; Katayama M. ; Kubota J. ; Domen K. Angew. Chem. Int. Edit. 2013, 52, 11252.
29 Li R. ; Zhang F. ; Wang D. ; Yang J. ; Li M. ; Zhu J. ; Zhou X. ; Han H. ; Li C. Nat. Commun. 2013, 4, 1432.
30 Klahr B. ; Gimenez S. ; Fabregat-Santiago F. ; Hamann T. ; Bisquert J. J. Am. Chem. Soc. 2012, 134, 4294.
31 Formal F. L. ; Tétreault N. ; Cornuz M. ; Moehl T. ; Grätzel M. ; Sivula K. Chem. Sci. 2011, 2, 737.
32 Hwang Y. J. ; Hahn C. ; Liu B. ; Yang P. ACS Nano 2012, 6, 5060.
33 Zandi O. ; Hamann T. W. J. Phys. Chem. Lett. 2014, 5, 1522.
34 Lee M. H. ; Takei K. ; Zhang J. ; Kapadia R. ; Zheng M. ; Chen Y. Z. ; Nah J. ; Matthews T. S. ; Chueh Y. L. ; Ager J. W. ; Javey A. Angew. Chem. Int. Edit. 2012, 51, 10760.
35 Wang T. ; Gong J. Angew. Chem. Int. Edit. 2015, 54, 2.
36 Hu S. ; Shaner M. R. ; Beardslee J. A. ; Lichterman M. ; Brunschwig B. S. ; Lewis N. S. Science 2014, 344, 1005.
37 Li C. ; Wang T. ; Luo Z. ; Zhang D. ; Gong J. Chem. Commun. 2015, 51, 7290.
38 Bard A. J. ; Fox M. A. Accounts Chem. Res. 1995, 28, 141.
39 Trotochaud L. ; Mills T. J. ; Boettcher S. W. J. Phys. Chem. Lett. 2013, 4, 931.
40 Morales-Guio C. G. ; Mayer M. T. ; Yella A. ; Tilley S. D. ; Grätzel M. ; Hu X. J. Am. Chem. Soc. 2015, 137, 9927.
41 Zhong M. ; Hisatomi T. ; Kuang Y. ; Zhao J. ; Liu M. ; Iwase A. ; Jia Q. ; Nishiyama H. ; Minegishi T. ; Nakabayashi M. ; Shibata N. ; Niishiro R. ; Katayama C. ; Shibano H. ; Katayama M. ; Kudo A. ; Yamada T. ; Domen K. J. Am. Chem. Soc. 2015, 137, 5053.
42 Chang X. ; Wang T. ; Zhang P. ; Zhang J. ; Li A. ; Gong J. J. Am. Chem. Soc. 2015, 137, 8356.
43 Liu J. ; Liu Y. ; Liu N. ; Han Y. ; Zhang X. ; Huang H. ; Lifshitz Y. ; Lee S. T. ; Zhong J. ; Kang Z. Science 2015, 347, 970.
44 Barroso M. ; Pendlebury S. R. ; Cowan A. J. ; Durrant J. R. Chem. Sci. 2013, 4, 2724.
45 Werner D. ; Furube A. ; Okamoto T. ; Hashimoto S. J. Phys. Chem. C 2011, 115, 8503.
[1] Hui-Wen ZUO,Chun-Hai LU,Yu-Rong REN,Yi LI,Yong-Fan ZHANG,Wen-Kai CHEN. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190.
[2] Chang. FENG,Xiao-Yan. DENG,Xiao-Xiao. NI,Wei-Bing. LI. Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2349-2357.
[3] GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 723-728.
[4] LAN Ben-Yue, SHI Hai-Feng. Review of Systems for Photocatalytic Conversion of CO2 to Hydrocarbon Fuels[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2177-2196.
[5] DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia. Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 2062-2068.
[6] SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1819-1826.
[7] YUAN Wen-Hui, LIU Xiao-Chen, LI Li. Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 151-156.
[8] ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi. Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2336-2342.
[9] CHEN Xiao-Yun, LU Dong-Fang, HUANG Jin-Feng, LU Yan-Feng, ZHENG Jian-Qiang. Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 161-169.
[10] LI Ben-Xia, WANG Yan-Fen, LIU Tong-Xuan. Adjustable Synthesis and Visible-Light Responsive Photocatalytic Performance of V2O5·xH2O-BiVO4 Nanocomposites[J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2946-2952.
[11] LU Sheng-Yong, HUANG Yi-Long, WANG Qiu-Lin, LI Xiao-Dong, YAN Jian-Hua. Photocatalytic Degradation of Gaseous 1,2-Dichlorobenzene over TiO2/AC Photocatalysts[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2191-2199.
[12] YING Hong, WANG Zhi-Yong, GUO Zheng-Duo, SHI Zu-Jin, YANG Shang-Feng. Reduced Graphene Oxide-Modified Bi2WO6 as an Improved Photocatalyst under Visible Light[J]. Acta Phys. -Chim. Sin., 2011, 27(06): 1482-1486.
[13] ZHANG Ai-Ping, ZHANG Jin-Zhi. Syntheses and Activities of Visible-Light-Driven Cu/BiVO4 Composite Photocatalysts[J]. Acta Phys. -Chim. Sin., 2010, 26(05): 1337-1342.
[14] FAN You-Jun, ZHEN Chun-Hua, CHEN Sheng-Pei, SUN Shi-Gang. Effect of Specific Adsorption of Anions and Surface Structure of Pt(111) Electrode on Kinetics of Dissociative Adsorption of Ethylene Glycol[J]. Acta Phys. -Chim. Sin., 2009, 25(05): 999-1003.
[15] HU Yuan-Fang; LI Yue-Xiang; PENG Shao-Qin; LV Gong-Xuan; LI Shu-Ben. Photocatalytic Properties of Composite of SiO2 and Pt-Cd0.53Zn0.47S Solid Solutions[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 2071-2076.