Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (12): 2332-2340    DOI: 10.3866/PKU.WHXB201510202
CATALYSIS AND SURFACE SCIENCE     
Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties
Qi. QI1,Yu-Qiao. WANG1,*(),Sha-Sha. WANG1,Hao-Nan. QI1,Tao. WEI2,Yue-Ming. SUN1,*()
1 1School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
2 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
Download: HTML     PDF(7363KB) Export: BibTeX | EndNote (RIS)      

Abstract  

P25-reduced graphene oxide nanocomposites (RGO-P25) are prepared by using a facile one-step hydrothermal method. Their structure and photoelectrical properties are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The degradation effect of different addition ratios of the RGO-P25 nanocomposite on the photocatalytic degradation of methylene blue (MB) is investigated under UV and visible illumination. Results show that graphene oxide can be reduced during the hydrothermal reaction and thus, a mixed high defect P25 particles and RGO sheet composite is formed by electrostatic attraction. Band gaps of nanocomposites decreased from 3.00 to 2.27 eV with an increase in the amount of the RGO content. The electrical conductivities of the nanocomposites enhanced with an increased RGO amount. Over 80% of the initial methylene blue dye is decomposed by 1% (w, mass fraction) RGO-P25 after 30 min under either visible light or ultraviolet light. Under UV light illumination, 63% (molar fraction) of the N3 dye, cis-Ru(H2dcbpy)2(NCS)2 (H2dcbpy = 4, 4'-dicarboxy-2, 2'-bipyridyl), is decomposed by the 1% RGO-P25 nanocomposite. Compared with the bare P25 (75% anatase; 25% rutile), the continual addition of RGO enhances the photocatalytic activity and gives rise to the more effective separation of photogenerated electron-hole pairs.



Key wordsGraphene      TiO2      Nanocomposite      Hydrothermal method      Photocatalysis property     
Received: 21 August 2015      Published: 20 October 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21173042);National Key Basic Research Program of China (973)(2013CB932902);Fundamental Research Funds for the Central Universities, China(2242014K10025,3207045419);Natural Science Foundation ofJiangsu Province, China(BK20141338);Science & Technology Support Project of Jiangsu Province, China(BE2013118);Special Funds forTransformation of Scientific & Technological Achievements of Jiangsu Province, China(BA2014069);Seminar Funds of Southeast University,China(1107041501);Practice Innovation Program for Graduate Students of Jiangsu Province, China(SJLX150047)
Corresponding Authors: Yu-Qiao. WANG,Yue-Ming. SUN     E-mail: yqwang@seu.edu.cn;sun@seu.edu.cn
Cite this article:

Qi. QI,Yu-Qiao. WANG,Sha-Sha. WANG,Hao-Nan. QI,Tao. WEI,Yue-Ming. SUN. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties. Acta Physico-Chimica Sinca, 2015, 31(12): 2332-2340.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510202     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I12/2332

Fig 1 TEM images of GO (a), 0.5%(w)RGO-P25 (b), 1%(w)RGO-P25 (c), 5%(w)RGO-P25 (d), 10%(w)RGO-P25 (e), and 15%(w)RGO-P25 (f) nanocomposites GO: graphene oxide; RGO: reduced graphene oxide; P25: 75% anatase, 25% rutile TiO2
Fig 2 XRD patterns of P25 and RGO-P25 nanocomposites
Fig 3 FT-IR spectra of P25, GO, and RGO-P25 nanocomposites
Fig 4 Survey XPS spectrum of the RGO-P25 nanocomposite (a); XPS spectra of C 1s (b), O 1s (c), and Ti 2p (d)
Fig 5 UV-Vis DRS spectra of P25 and RGO-P25 nanocomposites
Fig 6 Plot of transformed Kubelka-Munk function versus the energy of light for RGO-P25 nanocomposite
Fig 7 Raman spectra of GO and RGO-P25 nanocomposites
Fig 8 Electrochemical impedance Nyquist plots of RGO-P25 nanocomposites
Sample Rs/(Ω·cm2) Rct/(Ω·cm2) CPE-T CPE-P W-R W-T W-P
0.5%RGO-P25 21.29 40.28 6.53 × 10–5 0.887 39.19 203 0.242
1%RGO-P25 20.51 38.33 2.58 × 10–7 0.882 40.78 3.73 × 10–4 0.446
5%RGO-P25 18.36 36.80 1.58 × 10–7 0.872 23.00 2.03 × 10–4 0.459
10%RGO-P25 4.55 28.52 4.81 × 10–4 0.615 21.43 0.848 0.594
15%RGO-P25 4.21 18.71 5.59 × 10–4 0.603 8.99 0.823 0.646
Rs represents an ohmic resistance between the reference electrode and the working electrode; Rct represents the interface charge transfer resistance, CPE (CPE-R & CPE-P) characterizes the dispersion effect and Wo (W-R, W-T, W-P) is the half infinite diffusion impedance.
Table 1 Calculated data of electric elements
Fig 9 Photocurrent transient response of RGO-P25 nanocomposites in 0.2 mol·L–1 Na2SO4 aqueous solution under UV-Vis light irradiation
Fig 10 Bar plot of the remaining methylene blue (MB) in solution after reaching the adsorption equilibrium in the dark condition for P25 and RGO-P25 nanocomposites
Fig 11 MB degradation curves under the irradiation of (a) UV light and (b) visible light (450 nm) over the RGO-P25 nanocomposites
Fig 12 (a) Photocatalytic degradation of N3 dye under the irradiation of visible light (450 nm) over the pure P25 and 1%RGO-P25 nanocomposite; (b) photocatalytic degradation of N3 dyes by the 1%RGO-P25 nanocomposite under the irradiation of UV light and visible light (450 nm)
1 Li D. ; Chen H. C. ; Li J. H. ; Zhou B. X. ; Cai W. M. Acta Phys. -Chim. Sin 2011, 27 (9), 2153.
1 李迪; 陈红冲; 李金花; 周保学; 蔡伟民. 物理化学学报, 2011, 27 (9), 2153.
2 Wu Y. Q. ; Lü G. X. ; Li S. B. Acta Phys. -Chim. Sin 2004, 20 (7), 755.
2 吴玉琪; 吕功煊; 李树本. 物理化学学报, 2004, 20 (7), 755.
3 Chu D. B. ; Yin X. J. ; Feng D. X. ; Lin H. S. ; Tian Z. W. Acta Phys. -Chim. Sin 2006, 22 (10), 1238.
3 褚道葆; 尹晓娟; 冯德香; 林华水; 田昭武. 物理化学学报, 2006, 22 (10), 1238.
4 Xu P. C. ; Liu Y. ; Wei J. H. ; Xiong R. ; Pan C. X. ; Shi J. Acta Phys. -Chim. Sin 2010, 26 (8), 2261.
4 许平昌; 柳阳; 魏建红; 熊锐; 潘春旭; 石兢. 物理化学学报, 2010, 26 (8), 2261.
5 Wang Y. Q. ; Wang P. P. ; Lu J. ; Bai Y. C. ; Gu Y. L. ; Sun Y. M. Acta Phys. -Chim. Sin 2015, 31 (3), 448.
5 王育乔; 王盼盼; 卢静; 白一超; 顾云良; 孙岳明. 物理化学学报, 2015, 31 (3), 448.
6 Yu J. H. ; Fan M. G. ; Li B. ; Dong L. H. ; Zhang F. Y. Acta Phys. -Chim. Sin 2015, 31 (3), 519.
6 于建华; 范闽光; 李斌; 董丽辉; 张飞跃. 物理化学学报, 2015, 31 (3), 519.
7 Liang Y. ; Wang H. ; Casalongue H. S. ; Chen Z. ; Dai H. J. Nano Research 2010, 3 (10), 701.
8 Chen C. ; Cai W. ; Long M. ; Zhou B. X. ; Wu Y. H. ; Wu D. Y. ; Feng Y. J. ACS Nano 2010, 4 (11), 6425.
9 Yoo D. H. ; Cuong T. V. ; Pham V. H. ; Chuang J. S. ; Hhoa N. T. ; Kim E. J. ; Hahn S. H. Curr. Appl. Phys 2011, 11 (3), 805.
10 Gan Y. P. ; Qin H. P. ; Huang H. ; Tao X. Y. ; Fang J. W. ; Zhang W. Q. Acta Phys. -Chim. Sin 2013, 29 (2), 403.
10 甘永平; 秦怀鹏; 黄辉; 陶新永; 方俊武; 张文魁. 物理化学学报, 2013, 29 (2), 403.
11 Loh K. P. ; Bao Q. ; E da. ; G . ; Chhowalla M. Nat. Chem 2010, No. 2, 1015.
12 Jahan M. ; Bao Q. ; Yang J. X. ; Loh K. P. J. Am. Chem. Soc 2010, 132 (41), 14487.
13 Sakthive S. ; Kisch H. Angew. Chem. -Int. Edit 2003, 42 (40), 4908.
14 Williams G. ; Seger B. ; Kamat P. V. ACS Nano 2008, 2 (7), 1487.
15 Zhang X. Y. ; Li H. P. ; Cui X. L. ; Lin Y. H. J.Mater. Chem 2010, No. 20, 2801.
16 Dresselhaus M. S. ; Jorio A. ; Hofmann M. ; Dresselhaus G. ; Saito R. Nano Lett 2010, 10 (3), 751.
17 Zhang W. X. ; Cui J. C. ; Tao C. A. ; Wu Y. G. ; Li Z. P. ; Li M. ; Wen Y. Q. ; Li G. T. Angew. Chem. -Int. Edit 2009, 48 (32), 5864.
18 Lu J. ; Yang J. X. ; Wang J. ; Lim A. ; Wang S. ; Loh K. P. ACS Nano 2009, 3 (8), 2367.
19 Zhou Y. ; Bao Q. ; Tang L. A. L. ; Zhong Y. L. ; Loh K. P. Chem. Mat 2009, 21 (13), 2950.
20 Zhang H. ; Lv X. J. ; Li Y. M. ; Li J. H. ACS Nano 2010, 4 (1), 380.
21 Lv X. J. ; Fu W. F. ; Chang H. X. ; Zhao H. ; Cheng J. S. ; Zhang G. J. ; Song Y. ; Hu C. Y. ; Li J. H. J. Math. Chem 2012, 22 (4), 1539.
22 Zhang Y. H. ; Tang Z. R. ; Fu X. Z. ; Xu Y. J. ACS Nano 2010, 4 (12), 7303.
23 Akhavan O. ; Ghaderi E. J. Phys. Chem. C 2009, 113 (47) 2009, 113 (47), 20214.
24 Cheng P. ; Yang Z. ; Wang H. ; Cheng W. ; Chen M. X. ; Shangguan W. F. ; Ding G. F. Int. J. Hydrog. Energy 2012, 37 (3), 2224.
25 Ren L. ; Qi X. ; Liu Y. D. ; Huang Z. Y. ; Wei X. L. ; Li J. ; Yang L. W. ; Zhong J. X. J. Mater. Chem 2012, 22 (23), 11765.
26 Long M. ; Cong Y. ; Li X. K. ; Cui Z. W. ; Dong Z. J. ; Yuan G. M. Acta Phys. -Chim. Sin 2013, 29 (6), 1344.
26 龙梅; 丛野; 李轩科; 崔正威; 董志军; 袁观明. 物理化学学报, 2013, 29 (6), 1344.
[1] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[3] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 168-176.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[9] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[10] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[11] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[12] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[13] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[14] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[15] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 602-610.