Please wait a minute...
Acta Phys. -Chim. Sin.  2015, Vol. 31 Issue (12): 2349-2357    DOI: 10.3866/PKU.WHXB201510281
CATALYSIS AND SURFACE SCIENCE     
Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity
Chang. FENG1,Xiao-Yan. DENG1,*(),Xiao-Xiao. NI2,Wei-Bing. LI1
1 School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, P. R. China
2 Qingdao Municipal Drainage Monitoring Center, Qingdao 266002, Shandong Province, P. R. China
Download: HTML     PDF(7804KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Porous ZnO nanorods that displayed excellent photocatalytic degradation of organic pollutants (RhB and phenol) were prepared via a solvent thermal method followed by surface modification with carbon dots (C-dots) using a deposition method. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The degradation of the organic pollutants using the nanorods was tested under Xe-light illumination and was enhanced following C-dot modification. Nanorods that were modified by the C-dots at a mass fraction of 1.2% (CZn1.2) exhibited the highest photocatalytic activity for the degradation of RhB, which was 2.5 times of the pure porous ZnO nanorods. Additionally, the modified nanorods with strangely oxidation ability could catalyze the degradation of phenol by open-rings reaction under Xe-light illumination. The improved photocatalytic activity was attributed to the effective separation of the photogenerated electrons and holes, in which the C-dots served as the receptor of the photogenerated electrons.



Key wordsSemiconductor photocatalysis      ZnO      C-dots      Degradation of organic pollutants      Modified photocatalyst     
Received: 07 August 2015      Published: 28 October 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(41376126);Foundation of Key Laboratory of MarineEnvironmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences
Corresponding Authors: Xiao-Yan. DENG     E-mail: deng_xiao_yan@126.com
Cite this article:

Chang. FENG,Xiao-Yan. DENG,Xiao-Xiao. NI,Wei-Bing. LI. Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity. Acta Phys. -Chim. Sin., 2015, 31(12): 2349-2357.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510281     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I12/2349

Fig 1 XRD patterns of the series samples The mass fractions of 0%, 0.2%, 0.4%, 0.8%, 1.2%, 1.6%, 2.0% C-dots modified ZnO nanorods are denoted as (a) pure ZnO NR, (b) CZn0.2, (c) CZn0.4, (d) CZn0.8, (e) CZn1.2, (f) CZn1.6; (g) CZn2.0, respectively.
Fig 2 SEM images of (A1, A2) pure ZnO NR and (B1, B2) CZn1.2 (A1, B1) under low magnification; (A2, B2) under high magnification
Fig 3 TEM images of (A1, A2) pure ZnO NR and (B1, B2) CZn1.2 (A1, B1, ) low resolution, (A2, B2) high resolution
Fig 4 (A) XPS survey spectra of pure ZnO NR and CZn1.2 (A) and high-resolution XPS spectra of C 1s (B), O 1s (C), and Zn 2p (D)
Fig 5 UV-Vis diffuse reflectance spectra of the series samples
Fig 6 (A) Photocatalysis degradation RhB curves of the series of samples under Xe-light irradiation; (B) photocatalysis degradation RhB curves of CZn1.2 under different Xe-light source conditions Inset in figure A is UV-Vis absorption spectra of RhB irradiated by Xe-light irradiation for various durations in the presence of CZn1.2. Inset in figure B is the curve of CZn1.2 for photocatalysis degradation RhB under simulated visible light.
Fig 7 Effects of different free-radical scavengers on degradation of RhB in the presence of CZn1.2 under Xe-light irradiation for 8 min SO: soduim oxalate; N-BA: n-butyl alcohol; IPA: isopropyl alcohol
Fig 8 (A) Effect of different samples on phenol degradation; (a–f) UV absorption spectra of phenol irradiated by Xe-light irradiation for various durations in the presence of different samples (a) pure ZnO NR; (b) CZn0.4; (c) CZn0.8; (d) CZn1.2; (e) CZn1.6; (f) CZn2.0. P and H indicate phenol and hydroquinone, respectively.
Fig 9 Proposed photodegradation pathways of phenol
Fig 10 Photocatalytic mechanism of C-dots modified ZnO NR photocatalyst for RhB and phenol degradation VB: valence band; CB: conduction band
1 Maeda K. ; Teramura K. ; Lu D. ; Takata T. ; Saito N. ; Inoue Y. ; Domen K. Nature 2006, 440, 295.
2 Bu Y. Y. ; Chen Z. Y. RSC Adv 2014, 4, 45397.
3 Kudo A. ; Miseki Y. Chem. Soc. Rev 2009, 38, 253.
4 Xie J. ; Wang H. ; Duan M. Acta Phys. -Chim. Sin 2011, 27, 193.
4 谢娟; 王虎; 段明. 物理化学学报, 2011, 27, 193.
5 Li D. H. ; Yang D. J. ; Quan F. Y. ; Wang B. B. ; Zhang L. J. ; Zhu S. S. ; Wang L. J. Nano Reports 2015, 1, 29.
6 Liu H. ; Wu X. F. ; Li X. Q. ; Wang J. ; Fan X. M. Chin. J. Catal 2014, 35, 1997.
6 刘红; 邬小凤; 李湘奇; 王婕; 范希梅. 催化学报, 2014, 35, 1997.
7 Xu F. ; Sun L. Energy Environ. Sci 2011, 4, 818.
8 Huang J. ; Yin Z. G. ; Zheng Q. D. Energy Environ. Sci 2011, 4, 3861.
9 Shen G. ; Cho J. H. ; Yoo J. K. ; Yi G. ; Lee C. J. J. Phys. Chem. B 2005, 109, 5491.
10 Li X. Q. ; Fan Q. F. ; Li G. L. ; Huang Y. H. ; Gao Z. ; Fan X. M. ; Zhang C. L. ; Zhou Z. W. Acta Phys. -Chim. Sin 2015, 31, 783.
10 李湘奇; 范庆飞; 李广立; 黄瑶翰; 高照; 范希梅; 张朝良; 周祚万. 物理化学学报, 2015, 31, 783.
11 Zhu C. Q. ; Lu B. G. ; Su Q. ; Xie E. Q. ; Lan W. Nanoscale 2012, 4, 3060.
12 Samadi M. ; Shivaee H. A. ; Zanetti M. ; Pourjavadi A. ; Moshfegh A. J. Mol. Catal. A: Chem 2012, 359, 42.
13 Bu Y. Y. ; Chen Z. Y. J. Power Sources 2014, 272, 647.
14 Sun X. ; Li Q. ; Jiang J. C. ; Mao Y. B. Nanoscale 2014, 6, 8769.
15 Sin J. C. ; Lam S. M. ; Satoshi I. ; Lee K. T. ; Mohamed A. R. Appl. Catal. B 2014, 148-149, 258.
16 Wang X. W. ; Yin L. C. ; Liu G. ; Wang L. Z. ; Saito R. ; Lu G. Q. ; Cheng H. M. Energy Environ. Sci 2011, 4, 3976.
17 Zhang Y. ; Lin S. ; Zhang Y. ; Song X. M. Acta Phys. -Chim. Sin 2013, 29, 2399.
17 张宇; 林申; 张钰; 宋溪明. 物理化学学报, 2013, 29, 2399.
18 Wu L. L. ; Tian R. X. ; Zhao Q. ; Chang Q. ; Hu S. L. Chem. J. Chin. Univ 2014, 35, 717.
18 武玲玲; 田瑞雪; 赵清; 常青; 胡胜亮. 高等学校化学学报, 2014, 35, 717.
19 Sun X. ; Tuo J. Q. ; Yang W. Y. ; Yang D. J. Nano Reports 2015, 2, 51.
20 Li H. ; He X. ; Kang Z. ; Huang H. ; Liu Y. ; Liu J. ; Lian S. ; Tsang C. H. ; Yang X. ; Lee S. T. Angew. Chem. Int. Edit 2010, 49, 4430.
21 Ming H. ; Ma Z. ; Liu Y. ; Pan K. M. ; Yu H. ; Wang F. ; Kang Z. H. Dalton Trans 2012, 41, 9526.
22 De B. ; Voit B. ; Karak N. RSC Adv 2014, 102, 58453.
23 Zhang H. C. ; Huang H. ; Ming H. ; Li H. T. ; Zhang L. L. ; Liu Y. ; Kang Z. H. J. Mater. Chem 2012, 22, 10501.
24 Li H. T. ; Kang Z. H. ; Liu Y. ; Lee S. T. J. Mater. Chem 2012, 22, 24230.
25 Wang J. ; Huang H. M. ; Xu Z. Z. ; Kou J. H. ; Lu C. H. Curr. Org. Chem 2014, 18, 1346.
26 Yu W. L. ; Zhang J. F. ; Peng T. Y. Appl. Catal. B 2016, 181, 220.
27 Jassby D. ; Farner B. J. ; Wiesner M. Environ. Sci. Technol 2012, 46, 6934.
28 Skompska M. ; Zarębska K. Electrochim. Acta 2014, 127, 467.
29 Liu J. ; Liu Y. ; Liu N. Y. ; Han Y. Z. ; Zhang X. ; Huang H. ; Lifshitz Y. ; Lee S. T. ; Zhong J. ; Kang Z. H. Science 2015, 347, 970.
30 Peng Y. ; Qin S. ; Wang W. S. ; Xu A. W. CrystEngComm 2013, 15, 6518.
31 Xu Y. G. ; Xu H. ; Li H. M. ; Xia J. X. ; Liu C. T. ; Liu L. J. Alloy. Compd 2011, 509, 3286.
32 Zhang H. ; Fan X. ; Quan X. ; Chen S. ; Yu H. Environ. Sci. Technol 2011, 45, 5731.
33 Wen Y. ; Ding H. ; Shan Y. Nanoscale 2011, 3, 4411.
34 Dong Y. Q. ; Wang R. X. ; Li H. ; Shao J. W. ; Chi Y. W. ; Lin X. M. ; Chen G. N. Carbon 2012, 50, 2810.
35 Peng W. Q. ; Qu S. C. ; Cong G. W. ; Wang Z. G. Cryst. Growth Des 2006, 6, 1518.
36 Li Y. ; Zhang B. P. ; Zhao J. X. J. Alloy. Compd 2014, 586, 663.
37 Rajbongshi B. M. ; Samdarshi S. K. Appl. Catal. B 2014, 144, 435.
38 Yu X. J. ; Liu J. J. ; Yu Y. C. ; Zuo S. L. ; Liu B. S. Carbon 2014, 68, 718.
39 Su R. ; Tiruvalam R. ; He Q. ; Dimitratos N. ; Kesavan L. ; Hammond C. ; Lopez-Sanchez J. A. ; Bechstein R. ; Kiely C. J. ; Hutchings G. J. ; Besenbacher F. ACS Nano 2012, 6, 6284.
40 Xue C. ; Wang T. ; Yang G. D. ; Yang B. L. ; Ding S. J. J. Mater. Chem. A 2014, 2, 7674.
[1] Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.
[2] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[3] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[4] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[5] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[6] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[7] Hai-Feng HU,Tao HE. Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 543-550.
[8] Yuan-You WANG,Guo-Qiang ZHOU,Long ZHANG,Tian-Qing LIU. Synthesis and Photocatalytic Characterization of Porous Cu-Doped ZnO Nanorods[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2785-2793.
[9] Zhi-Gang. WANG,Xiang-Ming. ZENG,Yang. ZHANG,Rao. HUANG,Yu-Hua. WEN. First-Principles Study of Effect of Strain on the Band Structure of ZnO Monolayer[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1677-1682.
[10] La-Ga. TONG,Jin-Yan. LIU,Cen-Chen. WANG,Hua. RONG,Wei. LI. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1615-1620.
[11] YUAN Jun-Hui, GAO Bo, WANG Wen, WANG Jia-Fu. First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1302-1308.
[12] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1421-1429.
[13] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 783-792.
[14] Qiu-Xia. FENG,Peng. YU,Jing. WANG,Xiao-Gan. LI. Preparation of Y-Doped ZnO Nanofibers and Sensing Mechanism of the Gas Sensors[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2405-2412.
[15] Yan-Zhong. HAO,Zhi-Min. GUO,Bao. SUN,Juan. PEI,Shang-Xin. WANG,Ying-Pin. LI. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2109-2116.