Please wait a minute...
Acta Physico-Chimica Sinca  2015, Vol. 31 Issue (12): 2229-2250    DOI: 10.3866/PKU.WHXB201510301
REVIEW     
Correlation between ECD Spectra and the Absolute Configurations of Chiral Salen-Ni(Ⅱ) Complexes: a Fingerprint Role of the First ECD Band in the Visible Region
Hui. ZHANG1(),Li-Li. ZENG1,Yue-Kui. WANG2(),Shi. CAO1,Dong. GUO1,Dan. LI1,Xue-Ming. FANG1,Li-Rong. LIN1()
1 Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
2 Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
Download: HTML     PDF(10025KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A correlation between the electronic circular dichroism (ECD) spectra and the absolute configurations of a serials' chiral salen-Ni(Ⅱ) complexes was investigated. The solid-state structures, absolute configurations, and preferential conformations in solution of quasi-planar chiral [Ni(salen)] complexes were studied using their crystal structures, solid-state and solution ECD spectra in combination with theoretical ECD calculations. Furthermore, two different nomenclatures for the absolute configurations of square-planar [M(salen)] complexes were inspected carefully, and suggestions for proper use of them are discussed. The calculated ECD spectra of [Ni(sal-R, R-chxn)] [sal-R, R-chxn = (R, R)-1, 2-cyclohexylene bis(salicylicdeneiminate)] in dichloromethane solution revealed that the first ECD band in the visible region was dominated by the ligandto-metal charge transfer transition (LMCT), which was incorrectly assigned to a d-d transition in the literature. When the absolute configuration of [Ni(sal-R, R-chxn)] was Λ, the first ECD absorption band in the visible region was positive. This ECD fingerprint is universally applicable for assigning the absolute configurations of other square-planar chiral [Ni(salen)] and six-coordinate trans-[Co(salen)L2] complexes with a "closed-shell" electronic structure. This work provides some insight into the coordination stereochemistry and chiroptical properties of chiral [M(salen)] complexes. Additionally, this work is significant for the understanding of chiral recognition and asymmetric catalytic mechanisms.



Key wordsSalen-based Ni(Ⅱ) complex      Electronic circular dichroism      Solid-state chiroptical spectroscopy      Absolute configuration correlation      Fingerprint technique     
Received: 09 September 2015      Published: 30 October 2015
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21273175, 21273139, 21271150)
Cite this article:

Hui. ZHANG,Li-Li. ZENG,Yue-Kui. WANG,Shi. CAO,Dong. GUO,Dan. LI,Xue-Ming. FANG,Li-Rong. LIN. Correlation between ECD Spectra and the Absolute Configurations of Chiral Salen-Ni(Ⅱ) Complexes: a Fingerprint Role of the First ECD Band in the Visible Region. Acta Physico-Chimica Sinca, 2015, 31(12): 2229-2250.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201510301     OR     http://www.whxb.pku.edu.cn/Y2015/V31/I12/2229

Fig 1 Structures and abbreviations of the classical [M(salen)] complexes1 M = VIV, FeIII, CoII, CoIII, NiII, CuII; X = O, Cl, N3, py, I, O2; Y = py.the absolute configurations and sign of optical rotation (λ = 589 nm) for chiral diamine: S-(+)-1, 2-pn, S-(+)-bn, S-(+)-chxn, S-(+)-pen, S-(–)-dpen
Fig 2 Structures and abbreviations of some symmetric chiral Schiff base Ni(II) complexes
Fig 3 Solution ECD spectra of the two series of chiral Schiff base Ni(II) complexes33, 34, 38
Complex Absolute configuration a Sign of the first ECD band in the visible region b Complex Absolute configuration a Sign of the first ECD band in the visible region b
[Ni(hacp-S-pn)] Λ + [Ni(dha-S-pn)] Λ +
[Ni(hacp-S, S-dpen)] Λ + [Ni(dha-S, S-dpen)] Λ +
[Ni(hacp-S, S-chxn)] Δ [Ni(dha-S, S-chxn)] Δ
[Ni(hacp-R-pn)] Δ [Ni(dha-R-pn)] Δ
[Ni(hacp-R, R-dpen)] Δ [Ni(dha-R, R-dpen)] Δ
[Ni(hacp-R, R-chxn)] Λ + [Ni(dha-R, R-chxn)] Λ +
Table 1 Table 1 Correlation between sign of the first ECD band in the visible region and the absolute configurations of chiral salen-type Ni(II) complexes33, 34, 38
Complex Color Yield/% MS(calcd.) [M + H]+
[Ni(sal-S-pn)] brown-yelleow 67 339.9 (339.1)
[Ni(sal-S, S-chxn)] red 75 379.0 (379.0)
[Ni(sal-S, S-dpen)] red-brown 70 478.1 (478.1)
[Ni(bsal-S-pn)] brown-yelleow 77 564.4 (564.3)
[Ni(bsal-S, S-chxn)] breen 68 603.5 (603.3)
[Ni(bsal-S, S-dpen)] brown-yelleow 78 701.5 (701.4)
[Ni(hacp-S-pn)] red 78 367.1 (367.1)
[Ni(hacp-S, S-chxn)] red 67 407.1 (407.1)
[Ni(hacp-S, S-dpen)] red 72 505.2 (505.1)
[Ni(dha-S-pn)] brick-red 79 431.1 (431.1)
[Ni(dha-S, S-chxn)] brick-red 65 471.1 (471.1)
[Ni(dha-S, S-dpen)] brick-red 79 569.2 (569.1)
Table 2 Color, yield, and MS analysis of chiral Schiff base Ni(II) complexes
Fig 4 UV-Vis (a) and ECD (b) spectra of chiral salen-Ni(II) complexes1 [M(sal-S-pn)] (——); [M(sal-S, S-chxn)] (·····); [M(sal-S, S-dpen)] (ooo); [M(sal-S, S-bn)] (---) in CHCl3 solution. The electronic spectra are those of the sal-S-pn derivatives. (left) [Cu(salen)], (right) [Ni(salen)]
Complex Absolute configuration a Sign of the first ECD band in the visible region Complex Absolute configuration a Sign of the first ECD band in the visible region
[Ni(hacp-S-pn)] Λ + [Ni(sal-S-pn)] Δ
[Ni(hacp-S, S-dpen)] Λ + [Ni(sal-S, S-dpen)] Δ
[Ni(hacp-S, S-chxn)] Δ [Ni(sal-S, S-chxn)] Δ
[Ni(hacp-R-pn)] Δ [Ni(sal-R-pn)] Λ +
[Ni(hacp-R, R-dpen)] Δ [Ni(sal-R, R-dpen)] Λ +
[Ni(hacp-R, R-chxn)] Λ + [Ni(sal-R, R-chxn)] Λ +
Table 3 Correlation between the sign of the first ECD band in the visible region and the absolute configurations of chiral [Ni(salen)] complexes
Fig 5 X-ray crystal structures of [Ni(salen)] with chiral end groups25 (A) the molecular structure with carbon chirality; (B) the molecular structure with (M)-helicity, in which the chxn ring is given in red (color on web version); (C) the λ-conformation of the two fused rings (chxn ring and five-membered chelate ring)
Fig 6 Solution and solid-state ECD spectra of some bis-chelate Schiff base Zn(II) complexes45, 57 (A) absolute configurations of the pseudotetrahedral, nonplnanar bis-chelate Schiff base Zn(II) complexes.45, 57 (B) UV (a) and ECD (b) spectra of Λ-Zn-R-1 in CHCl3 solution. The insert is the ECD spectrum for a KBr disc.57 (C) ECD spectrum of Λ-Zn-R-2 in CHCl3 solution45
Fig 7 Tetrahedral distortion and nomenclatures of the absolute configurations for [M(salen)] complexes30, 33, 34, 56-60 Pseudo-square-planar [M(salen)] complexes with metal-centered Δ-or Λ-chirality (Δ = right-handed and Λ = left-handed): (a, d) conformations of the diamine chelate ring in distorted tetrahedrons; (b) the distorted tetrahedrons omitted the diamine chelate ring30 [the structures in (b) are another representations of those in (a), but they undergo a 90° counterclockwise and clockwise rotations, respectively]; (c) illustration of the skew-line relationship between a pair of chelate rings that can be used to define the Δ and Λ metal-centered chirality; 1, 80 (e) absolute configuretions of a pair of chiral [M(salen)] complexes projected onto the pseudo-square-plane; 56–59 (f, g) identical structures
  Complex Sign pattern of bisignate ECD couplet Absolute configuration Ref.
Class Aa Zn-R-1 –/+ Λ(Δb) 57, 59
Zn-R-2 –/+ Λ(Δb) 45
Zn-R-2 –/+ Λ(Δb) 45
Class Bb [Zn(sal-R-pn)] +/– Λ 38, 57, 59, 61
[Cu(sal-R-pn)] +/– Λ 57, 59
[Cu(sal-S-pn)] –/+ Δ 38, 57, 59
[Cu(sal-S, S-dpen)] –/+ Δ 1, 38, 57, 59
[Cu(sal-S, S-chxn)] +/– Λ 1, 38, 57, 59
[Ni(sal-S, S-chxn)] +/– Λ 1, 38, 57, 59
Table 4 ECD excition chirality and the absolute configuration correlation of chiral Schiff base M(II) complexes
Fig 8 Schematic illustration for the structures of trans-[CoIII(salen)L2]+ complexes81, 82
Fig 9 ECD spectra of the complexes trans-[CoIII(salen)L2]+ in CH2Cl2 solution81 (a) trans-[Co(salen)(Im)2]ClO4; (b) trans-[Co(salen)(2-MeIm)2]ClO4; (c) trans-[Co(salen)(MeIm)2]ClO4
Fig 10 ECD spectrum of a chiral [Ni(salen)] derivative in CH2Cl2 solution22
Fig 11 Schematic illustration for the structure of C2(Λλ)-[Ni(sal-R, R-chxn)]
Bond Bond length/nm Bond Bond angle/(°)
calculated measured calculated measured
Ni―N1 0.1879 0.1857 N1―NiN2 86.29 86.21
NiO1 0.1869 0.1847 N1―Ni―O1 94.20 94.76
C1―C2 0.1531 0.1514 O1―Ni―O2 85.47 84.62
C1―N1 0.1479 0.1482 C1―N1―Ni 112.07 112.13
C=N1 0.1291 0.1289 N1―C1―C2 105.64 104.95
C=O1 0.1300 0.1310 N1―Ni―O2 176.95 175.57
Table 5 Comparison of the calculated and measured30 bond parameters of C2(Λλ)-[Ni(sal-R, R-chxn)]a
Fig 12 Selected Kohn-Sham orbitals and DFT energy-levels of C2(Λλ)-[Ni(sal-R, R-chxn)]
No. Symmetry λ/nm f R/(DBM) |μ|/D |m|/(BM) θ/(°) Dominant orbital transitions
1 11B 617.94 0.0000 0.05212 0.0745 0.7951 27.0 dxy + πsaldyzNiO, Nin*)
2 21B 561.04 0.0002 –0.00441 0.1493 0.0330 152.9 dx$^2$y$^2$dyzNiO, Nin*)
3 21A 502.03 0.0000 0.05739 0.0541 1.0084 0.0 dxy + πsaldyzNiO, Nin*)
4 31B 457.22 0.0091 –0.00129 0.9384 1.5954 90.0 σNiO, NiN + dz$^2$dyzNiO, Nin*)
5 41B 406.04 0.0423 –0.38177 1.9105 2.2989 94.9 πsal + dxyπsal*
6 31A 396.72 0.0799 0.15846 2.5966 0.0603 0.0 πsalπsal*
7 51B 340.30 0.0004 0.00188 0.1790 0.0161 54.8 dx$^2$y$^2$πsal*
8 41A 336.49 0.0690 –0.08207 2.2215 0.0366 180.0 πsalπsal*
9 61B 334.21 0.0448 –0.23434 1.7852 1.6308 94.6 πsalπsal*
10 51A 329.83 0.0092 0.17702 0.8045 0.2183 0.0 πsal + dxydyzNiO, Nin*)
11 61A 323.71 0.0000 0.00234 0.0450 0.0535 0.0 dx$^2$y$^2$πsal*
12 71B 321.91 0.0022 –0.26556 0.3852 0.7466 158.1 d-saldyzNiO, Nin*)
Table 6 Excitation parameters and involved transitions for the lowest-lying 6 excited states of C2(Λλ)-[Ni(sal-R, R-chxn)]a
Fig 13 Calculated ECD spectrum of C2(Λλ)-[Ni(sal-R, R-chxn)] color on web version
Fig 14 Definition of the helicity-determining angle θ for [M(salen)]
Complex θ/(°) Complex θ/(°)
[Ni(sal-R-pn)]86 6.49b [Cu(sal-R-pn)]89 12.65e
[Ni(sal-R, R-chxn)]30 3.84 [Cu(sal-R, R-chxn)]90 13.68
[Ni(sal-R, S-dpen)]87, 88 9.66b [Cu(sal-R, S-dpen)]87 13.85b
[Ni(bsal-R, R-chxn)]71 8.47b [Cu(bsal-chxn)]89 19.67d
[Ni(hacp-S-pn)]72 6.03b [Cu(hacp-R-pn)]72 10.43b
[Ni(hacp-R-pn)]33, 34 6.86 [Cu(hacp-S, S-dpen)]c 3.73c
[Ni(hacp-R, R-chxn)]31, 33, 34 4.24 [Cu(dha-S, S-chxn)]c 18.48e
[Ni(hacp-S, S-dpen)]33, 34 3.28 [Cu(dha-S, S-dpen)]c 13.48e
[Ni(dha-dpen)]c, d  2.98c [Ni-R-Am-sal-R, R-chxn]25 15.04
Table 7 θ value of some [M(salen)] derivativesa
Complex Absolute configurationa Sign of the first ECD band in the visible region Complex Absolute configurationa Sign of the first ECD band in the visible region
[Ni(sal-S-pn)] Δ [Ni(bsal-S-pn)] Δ
[Ni(sal-S, S-dpen)] Δ [Ni(bsal-S, S-dpen)] Δ
[Ni(sal-S, S-chxn)] Δδ [Ni(bsal-S, S-chxn)] Δ
[Ni(sal-R-pn)] Λ + [Ni(bsal-R-pn)] Λ +
[Ni(sal-R, R-dpen)] Λ + [Ni(bsal-R, R-dpen)] Λ +
[Ni(sal-R, R-chxn)] Λλ + [Ni(bsal-R, R-chxn)] Λ +
Table 8 Correlation between the sign of the first ECD band in the visible region and the absolute configurations of chiral [Ni(salen)] complexes
Fig 15 Structures and abbreviations of [M(salen)] derived from the classical Jacobsen ligands7–9 M = NiII, CuII, ZnII, RuII, CoII, CoIII, MnIII, AlIII, FeIII, VIV, TiIV; X, Y = O, Cl, O, NO, Et
Fig 16 Schematic Newman projection of the axial (A) and equatorial (B) conformers
Fig 17 Conformations of chiral [Ni(salen)] based on the X-ray crystallography34, 70 (left) an axial conformer34; (right) an equatorial conformer70
Fig 18 Two diastereomeric conformers in an asymmetric unit69 (A, B, C) M-Λλ conformation; (D, E, F) P-Δλ conformation; (A) M-helix; (D) P-helix; (C, F) λ-twist of the chelate rings
Fig 19 Solution (left) and solid-state (right) ECD spectra of chiral [Ni(salen)] complexes
Fig 20 Solution (left) and solid-state (right) ECD spectra of chiral [Ni(bsalen)] complexes 注解
Fig 21 Solution (left) and solid-state (right) ECD spectra of chiral [Ni(hacp-en)] complexes
Fig 22 Solution (left) and solid-state (right) ECD spectra of chiral [Ni(dha-en)] complexes 注解
Fig 23 Solid-state ECD spectrum of Λλ-[Ni(hacp-S-pn)] concentrations of KCl pellets (total mass of the pellet): 1/800 (50 mg)
Fig 24 UV-Vis (top) and ECD (bottom) spectra of unsymmetric chiral Schiff base Ni(II) complex in CH2Cl264
Fig 25 UV-Vis (top) and ECD (bottom) spectra of [CoI(S-salen)] in pyridine solution1 The diamines are: S-pn (——); S, S-chxn (·····); S, S-dpen (ooo); S, S-bn (---); S-pen (–·–·–·–).The electronic spectra are those of the sal-S-pn derivatives.
1 Pasini A. ; Gullotti M. ; Ugo R. J. Chem. Soc., Dalton Trans 1977, No. 4, 346.
2 Katsuki T. Synlett 2003, No. 3, 281.
3 Katsuki T. Adv. Synth. Catal 2002, 344 (2), 131.
4 Hashihayata T. ; Punniyamurthy T. ; Irie R. ; Katsuki T. ; Akita M. ; Moro-Oka Y. Tetrahedron 1999, 55 (51), 14599.
5 Cozzi P. G. Chem. Soc. Rev 2004, 33 (7), 410.
6 Che C. M. ; Huang J. S. Coord. Chem. Rev 2003, 242 (1-2), 97.
7 Zhang W. ; Loebach J. L. ; Wilson S. R. ; Jacobsen E. N. J. Am. Chem. Soc 1990, 112 (7), 2801.
8 Jacobsen E. N. ; Zhang W. ; Muci A. R. ; Ecker J. R. ; Deng L. J. Am. Chem. Soc 1991, 113 (18), 7063.
9 Pospisil P. J. ; Carsten D. H. ; Jacobsen E. N. Chem. -Eur. Jv 1996, 2 (8), 974.
10 Scheurer A. ; Mosset P. ; Spiegel M. ; Saalfrank R. W. Tetrahedron 1999, 55 (4), 1063.
11 DiMauro E. F. ; Kozlowski M. C. Organometallics 2002, 21 (7), 1454.
12 Belokon Y. N. ; Fuentes J. ; North M. ; Steed J. W. Tetrahedron 2004, 60 (14), 3191.
13 Scheurer A. ; Maid H. ; Hampel F. ; Saalfrank R. W. ; Toupet L. ; Mosset P. ; Puchta R. ; van Eikema Hommes N. J. R. Eur. J. Org. Chem 2005, No. 12, 2566.
14 Dey S. ; Powell D. R. ; Hu C. ; Berkowitz D. B. Angew. Chem. Int. Edit 2007, 46 (37), 7010.
15 Achard T. R. J. ; Clegg W. ; Harrington R. W. ; North M. Tetrahedron 2012, 68 (1), 133.
16 Kochem A. ; Kanso H. ; Baptiste B. ; Arora H. ; Philouze C. ; Jarjayes O. ; Vezin H. ; Luneau D. ; Orio M. ; Thomas F. Inorg. Chem 2012, 51 (20), 10557.
17 Barman S. ; Patil S. ; Desper J. ; Aikens C. M. ; Levy C. J. Eur. J. Inorg. Chem 2013, 2013 (33), 5708.
18 Diaz C. ; Frazer A. ; Morales A. ; Belfield K. D. ; Ray S. ; Hernandez F. E. J. Phys. Chem. A 2012, 116 (10), 2453.
19 Sato H. ; Mori Y. ; Yamagishi A. Dalton Trans 2013, 42 (19), 6873.
20 Akine S. ; Matsumoto T. ; Nabeshima T. Chem. Commun 2008, No. 38, 4604.
21 Akine S. ; Hotate S. ; Matsumoto T. ; Nabeshima T. Chem. Commun 2011, 47 (10), 2925.
22 Zhang F. ; Bai S. ; Yap G. P. A. ; Tarwade V. ; Fox J. M. J. Am. Chem. Soc 2005, 127 (30), 10590.
23 Dong Z. ; Karpowicz R. J.,r. ; Bai S. ; Yap G. P. A. ; Fox J. M. J. Am. Chem. Soc 2006, 128 (44), 14242.
24 Dong Z. ; Yap G. P. A. ; Fox J. M. J. Am. Chem. Soc 2007, 129 (38), 11850.
25 Dong Z. ; Plampin J. N.,III. ; Yap G. P. A. ; Fox J. M. Org. Lett 2010, 12 (18), 4002.
26 Saito M. ; Sato H. ; Mori Y. ; Fukuda Y. Bull. Chem. Soc. Jpn 2009, 82 (10), 1266.
27 Wiznycia A. V. ; Desper J. ; Levy C. J. Chem. Commun 2005, (37), 4693.
28 Wiznycia A. V. ; Desper J. ; Levy C. J. Inorg. Chem 2006, 45 (25), 10034.
29 Cooper C. J. ; Jones M. D. ; Brayshaw S. K. ; Sonnex B. ; Russell M. L. ; Mahon M. F. ; Allan D. R. Dalton Trans 2011, 40 (14), 3677.
30 Wojtczak A. ; Szlyk E. ; Jaskolski M. ; Larsen E. Acta Chem. Scand 1997, 51 (3), 274.
31 Szlyk E. ; Wojtczak A. ; Larsen E. ; Surdykowski A. ; Neumann J. Inorg. Chim. Acta 1999, 293 (2), 239.
32 Kureshy R. I. ; Khan N. H. ; Abdi S. H. R. ; Patel S. T. ; Iyer P. ; Suresh E. ; Dastidar P. J. Mol. Catal. A: Chem 2000, 160 (2), 217.
33 Li, L. Synthesis, Characterization and Solid CD Spectra of Chiral Schiff Base Complexes. Master Dissertation, Xiamen University, Xiamen, 2005.
33 李丽.手性席夫碱金属配合物的合成、表征及其固体CD光谱研究[D].厦门:厦门大学, 2005.
34 Wang F. ; Zhang H. ; Li L. ; Hao H. Q. ; Wang X. Y. ; Chen J. G. Tetrahedron: Asymmetry 2006, 17 (14), 2059.
35 Ru J. ; Gao F. ; Wu T. ; Yao M. X. ; Li Y. Z. ; Zuo J. L. Dalton Trans 2014, 43 (3), 933.
36 Ru J. ; Gao F. ; Yao M. X. ; Wu T. ; Zuo J. L. Dalton Trans 2014, 43 (48), 18047.
37 Zhang H. ; Chen Y. C. ; Wang F. ; Qiu X. M. ; Li L. ; Chen J. G. Acta Phys. -Chim. Sin 2006, 22 (6), 666.
37 章慧; 陈渊川; 王芳; 邱晓明; 李丽; 陈坚固. 物理化学学报, 2006, 22 (6), 666.
38 Zhang, H. Coordination Chemistry, Principles and Applications; Chemical Industry Press, Beijing, 2008; Chapter 6.
38 章慧.配位化学——原理与应用.北京:化学工业出版社, 2009:第六章.
39 Zhang H. ; Yan J. X. ; Wu S. T. ; Li D. ; Wan S. G. ; Ding L. ; Lin L. R. Acta Phys. -Chim. Sin 2013, 29 (12), 2481.
39 章慧; 颜建新; 吴舒婷; 李丹; 万仕刚; 丁雷; 林丽榕. 物理化学学报, 2013, 29 (12), 2481.
40 Zhou N. ; Wan S. G. ; Zhao J. ; Lin Y. J. ; Xuan W. M. ; Fang X. M. ; Zhang H. Sci. China Ser. B: Chem 2009, 52 (11), 1851.
41 Lin Y. ; Wan S. ; Zou F. ; Wang Y. ; Zhang H. New J. Chem 2011, 35 (11), 2584.
42 Lin Y. ; Zou F. ; Wan S. ; Ouyang J. ; Lin L. ; Zhang H. Dalton Trans 2012, 41 (22), 6696.
43 Lin, Y. J. Coordination Stereochemistry of Chiral β-Diketone Lanthanide Complexes. Ph. D. Dissertation, Xiamen University, Xiamen, 2012.
43 林以玑.手性β-二酮镧系络合物的配位立体化学[D].厦门:厦门大学, 2012.
44 Shirotani D. ; Suzuki T. ; Kaizaki S. Inorg. Chem 2006, 45 (16), 6111.
45 Chamayou A. C. ; Luedeke S. ; Brecht V. ; Freedman T. B. ; Nafie L. A. ; Janiak C. Inorg. Chem 2011, 50 (22), 11363.
46 Enamullah M. ; Vasylyeva V. ; Janiak C. Inorg. Chim. Acta 2013, 408, 109.
47 Enamullah M. ; Uddin A. K. M. R. ; Pescitelli G. ; Berardozzi R. ; Makhloufi G. ; Vasylyeva V. ; Chamayou A. C. ; Janiak C. Dalton Trans 2014, 43 (8), 3313.
48 Chamayou A. C. ; Makhloufi G. ; Nafie L. A. ; Janiak C. ; Luedeke S. Inorg. Chem 2015, 54 (5), 2193.
49 Shan X. F. ; Wang D. H. ; Tung C. H. ; Wu L. Z. Tetrahedron 2008, 64 (23), 5577.
50 Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical Simulations; Berova, N., Polavarapu, P. L., Nakanishi, K., Woody, R. W., Eds.; John Wiley & Sons, Inc.: Hoboken 2012; p 791.
51 Zhang H. ; Li L. ; Chen G. ; Wang F. ; Fang X. M. ; Chen J. G. University Chemistry 2005, 20 (2), 39.
51 章慧; 李丽; 陈贵; 王芳; 方雪明; 陈坚固. 大学化学, 2005, 20 (2), 39.
52 Wang, F. Synthesis, Characterizations and Properties of Chiral Unsymmetric Schiff base and Cu-Ln Complexes. Master Dissertation, Xiamen University, Xiamen, 2007.
52 王芳.非对称手性席夫碱配合物与手性双核(Cu-Ln)席夫碱配合物的合成、表征及性能研究[D].厦门:厦门大学, 2007.
53 Ding L. ; Wang F. ; Chen L. ; Zhang H. ; Zhao Y. Tetrahedron: Asymmetry 2008, 19 (23), 2653.
54 Ding, L. Application of Circular Dichrosim Spectroscopy, Measurement Techniques, Absolute Configuration Correlation and Preliminary Study on Electro-triggered Chiroptical Switches. Ph. D. Dissertation, Xiamen University, Xiamen, 2011.
54 丁雷.圆二色光谱的应用,测试技术、绝对构型关联及电致变圆二色光谱初探[D].厦门:厦门大学, 2011.
55 Ding L. ; Lin L. ; Liu C. ; Li H. ; Qin A. ; Liu Y. ; Song L. ; Zhang H. ; Tang B. Z. ; Zhao Y. New J. Chem 2011, 35 (9), 1781.
56 Ernst R. E. ; O'Connor M. J. ; Holm R. H. J. Am. Chem. Soc 1967, 89 (24), 6104.
57 Sakiyama H. ; Okawa H. ; Matsumoto N. ; Kida S. J. Chem. Soc., Dalton Trans 1990, No. 10, 2935.
58 Sakiyama H. ; Okawa H. ; Matsumoto N. ; Kida S. Bull. Chem. Soc. Jpn 1991, 64 (9), 2644.
59 Sakiyama H. ; Okawa H. ; Oguni N. ; Katsuki T. ; Irie R. Bull. Chem. Soc. Jpn 1992, 65 (2), 606.
60 Evans C. ; Luneau D. J. Chem. Soc., Dalton Trans 2002, No. 1, 83.
61 Bosnich B. J. Am. Chem. Soc 1968, 90 (3), 627.
62 O'Connor M. J. ; Ernst R. E. ; Holm R. H. J. Am. Chem. Soc 1968, 90 (17), 4561.
63 Downing R. S. ; Urbach F. L. J. Am. Chem. Soc 1970, 92 (20), 5861.
64 Costes J. P. ; Dominguez-Vera J. M. ; Laurent J. P. Polyhedron 1995, 14 (15/16), 2179.
65 Holm R. H. J. Am. Chem. Soc 1960, 82, 5632.
66 Wan S. ; Lin L. R. ; Zeng L. ; Lin Y. ; Zhang H. Chem. Commun 2014, 50 (97), 15301.
67 Ziegler M. ; Von Zelewsky A. Coord. Chem. Rev 1998, 177, 257.
68 Vanderveer D. ; Colon M. L. ; Bu X. R. Anal. Sci 2002, 18 (11), 1283.
69 Wu J. C. ; Tang N. ; Yu K. B. Acta Cryst. E 2003, 59 (11), m977.
70 Dong Z. ; Bai S. ; Yap G. P. A. ; Fox J. M. Chem. Commun 2011, 47 (13), 3781.
71 Shimazaki Y. ; Tani F. ; Fukui K. ; Naruta Y. ; Yamauchi O. J. Am. Chem. Soc 2003, 125 (35), 10512.
72 He X. ; Lu C. Z. ; Wu C. D. ; Liu H. F. ; Yu Y. Q. ; Zhang Q. Z. Chin. J. Struct. Chem 2005, 24 (2), 174.
73 Yamazaki A. ; Akitsu T. RSC Advances 2012, 2 (7), 2975.
74 Okamoto Y. ; Nidaira K. ; Akitsu T. Int. J. Mol. Sci 2011, 12 (10), 6966.
75 Dezhahang Z. ; Poopari M. R. ; Cheramy J. ; Xu Y. Inorg. Chem 2015, 54 (9), 4539.
76 Shan X. F. ; Wu L. Z. ; Liu X. Y. ; Zhang L. P. ; Tung C. H. Eur. J. Inorg. Chem 2007, (21), 3315.
77 Shan X. F. ; Wu L. Z. ; Zhang L. P. ; Tung C. H. Chin. Sci. Bull 2007, 52 (11), 1581.
78 Wang Y. ; Fu H. ; Shen F. ; Sheng X. ; Peng A. ; Gu Z. ; Ma H. ; Ma J. S. ; Yao J. Inorg. Chem 2007, 46 (9), 3548.
79 Amendola V. ; Fabbrizzi L. ; Linati L. ; Mangano C. ; Pallavicini P. ; Pedrazzini V. ; Zema M. Chem. -Eur. J 1999, 5 (12), 3679.
80 IUPAC. Nomenclature of Inorganic Chemistry IUPAC Recommendations. 2005, 203.
81 Zhang Y. L. ; Ruan W. J. ; Zhao X. J. ; Wang H. G. ; Zhu Z. A. Polyhedron 2003, 22 (12), 1535.
82 Su X. L. ; Wang Y. K. ; Wang Y. ; Jia J. ; Gao X. L. Acta Phys. -Chim. Sin 2011, 27 (7), 1633.
82 苏晓玲; 王越奎; 王炎; 贾杰; 高小丽. 物理化学学报, 2011, 27 (7), 1633.
83 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2013.
84 Wang A. ; Wang Y. ; Jia J. ; Feng L. ; Zhang C. ; Liu L. J. Phys. Chem. A 2013, 117 (24), 5061.
85 Brown A. ; Kemp C. M. ; Mason S. F. J.Chem. Soc. A 1971, 751
86 Das A. ; Shit S. ; Kö ckerling M. ; Batsanov A. S. ; Mitra S. J. Coord. Chem 2013, 66 (15), 2587.
87 Rusere L. N. ; Shalumova T. ; Tanski J. M. ; Tyler L. A. Polyhedron 2009, 28 (17), 3804.
88 Hoshina G. ; Tsuchimoto M. ; Ohba S. Acta Cryst 2000, C56, e122.
89 Bunce S. ; Cross R. J. ; Farrugia L. J. ; Kunchandy S. ; Meason L. L. ; Muir K. W. ; O'Donnell M. ; Peacock R. D. ; Stirling D. ; Teat S. J. Polyhedron 1998, 17 (23-24), 4179.
90 Bernardo K. ; Leppard S. ; Robert A. ; Commenges G. ; Dahan F. ; Meunier B. Inorg. Chem 1996, 35 (2), 387.
91 Saito M. ; Sato H. ; Mori Y. ; Fukuda Y. Bull. Chem. Soc. Jpn 2009, 82 (10), 1266.
92 von Zelewsky A. ; Mamula O. J. Chem. Soc., Dalton Trans 2000, No. 3, 219.
93 Meggers E. Chem. -Eur. J 2010, 16 (3), 752.
94 Brunner H. Angew. Chem. Int. Edit 1999, 38 (9), 1194.
95 Knof U. ; von Zelewsky A. Angew. Chem. Int. Edit 1999, 38 (3), 302.
96 Ganter C. Chem. Soc. Rev 2003, 32 (3), 130.
97 von Zelewsky A. Coord. Chem. Rev 1999, 192, 811.
98 von Zelewsky, A. Stereochemistry of Coordination Compounds; John Wiley & Sons: New York, 1996.
99 Hayoz P. ; Vonzelewsky A. ; Stoecklievans H. J. Am. Chem. Soc 1993, 115 (12), 5111.
100 Bauer E. B. Chem. Soc. Rev 2012, 41 (8), 3153.
[1] Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2480-2490.
[2] Dong GUO,Jia-Xi SONG,Dan LI,Jia-Mei CHEN,Li-Rong LIN,Tong-Bu LU,Hui ZHANG. Determination and Correlation of the Absolute Configurations of Chiral Nimodipine[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2241-2254.
[3] ZHANG Hui, YAN Jian-Xin, WU Shu-Ting, LI Dan, WAN Shi-Gang, DING Lei, LIN Li-Rong. Further Understanding on the Measurement Methods for Solid-State Circular Dichroism Spectroscopy——Discussion on Concentration Effects[J]. Acta Physico-Chimica Sinca, 2013, 29(12): 2481-2497.