Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (2): 481-492    DOI: 10.3866/PKU.WHXB201511041
ARTICLE     
Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors
Yong-Fang WANG,Song-Lin ZUO*()
Download: HTML     PDF(3007KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Different kinds of phosphorus-containing activated carbons were prepared by phosphoric acid activation of lignocellulosic precursor and modification with H3PO4. Elemental analysis, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption were employed to analyze the elemental content, surface chemistry, and pore structures of the activated carbons. The electrochemical properties of the carbon materials were characterized for their application as supercapacitors in KOH and H2SO4 electrolytes using galvanostatic charge/discharge, cyclic voltammetry, and electrochemical impedance spectroscopic analyses. A statistical analysis by an intercept-free multiple linear regression method was employed to investigate the factors that influence the specific capacitance of activated carbon electrodes. In addition, a three-electrode cell setup was used to analyze the cause of the phosphorus contribution on capacitance. The results show that phosphorus increases the specific capacitance of activated carbons by the introduction of pseudo-capacitance; the activated carbon with phosphorus content of 5.88% (w) exhibits a specific capacitance of 185 F·g-1 at 0.1 A·g-1. The statistical analysis showed that mesopores facilitate an access of electrolyte ions to the surface of micropores. The pores in the width ranges of 1.10-1.61 nm, 2.12-2.43 nm and 3.94 -4.37 nm benefit the formation of the electric double layer in 6 mol·L-1 KOH electrolyte; the pores with sizes of 0.67-0.72 nm have a positive effect in 1 mol·L-1 H2SO4 electrolyte.



Key wordsActivated carbon      Phosphorus functional group      Pore structure      Pseudo-capacitance      Supercapacitor     
Received: 30 June 2015      Published: 04 November 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(31270621);State Forestry Administration 948 ImportationProject, China(2012-4-08)
Corresponding Authors: Song-Lin ZUO     E-mail: zslnl@hotmail.com
Cite this article:

Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors. Acta Physico-Chimica Sinca, 2016, 32(2): 481-492.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511041     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I2/481

Samplew/%
NCHSPO
ACP 0.50 81.51 2.34 0.19 0.83 15.28
HACP-800 0.56 87.15 1.48 0.20 1.39 9.10
ACP-600 0.30 77.43 1.72 0.12 5.50 18.64
ACP-700 0.27 78.77 1.15 0.17 5.84 17.78
ACP-800 0.44 77.32 1.04 0.11 5.88 18.21
ACP-900 0.35 80.62 1.33 0.19 4.63 16.45
CS 0.51 93.94 0.74 0.24 n.d.a 5.00
CS-800 0.32 80.27 1.63 0.19 3.86 16.86
Table 1 Element contents of the activated carbons00
Fig 1 Nitrogen adsorption-desorption isotherms of the activated carbons
SampleSBET/(m2?g-1)VT/(cm3?g-1)Vmic/(cm3?g-1)Vmes/(cm3?g-1)(Vmes/VT)/%
HACP-800 1415 1.200 0.506 0.694 57.8
ACP-700 1209 0.783 0.415 0.368 47.0
ACP-800 1349 0.836 0.466 0.370 44.3
ACP-900 1353 0.883 0.469 0.414 46.9
CS 1662 0.877 0.572 0.305 34.8
CS-800 1507 0.744 0.510 0.234 31.5
SBET: BET surface area; VT: total pore volume; Vmic: micropore volume; Vmes: mesopore volume
Table 2 Parameters of pore structure of the activated carbons
Fig 2 Pore size distributions of the activated carbons calculated by quenched solid density functional theory (QSDFT) method
Fig 3 (a) O 1s and (b) P 2p XPS spectra of ACP-800
SampleAO/%Peak(O 1sa)/%AP/%Peak(P 2pb)/%
ABCDEABC
HACP-800 7.46 14.29 39.92 29.93 11.05 4.81 0.36 56.66 36.76 6.58
ACP-700 14.47 17.78 40.65 27.37 10.94 3.26 1.15 55.81 39.36 4.83
ACP-800 13.81 26.13 37.55 27.21 6.49 2.62 1.17 54.05 40.51 5.44
ACP-900 14.96 11.41 44.43 36.86 6.23 1.07 0.63 55.16 38.92 5.92
CS-800 16.59 6.29 50.01 41.06 2.64 0 0.40 60.21 39.77 0.02
A: atomic fraction; a the relative intensity of deconvoluted O 1s core-level peaks, labels A-E correspond to those in the spectra in Fig.3 (a); b the relative intensity of deconvoluted P 2p core-level peaks,labels A-C correspond to those in the spectra in Fig.3 (b)
Table 3 Distributions of phosphorus and oxygen functional groups of phosphorus-containing activated carbons obtained from the P 2p and O 1s XPS peaks
Region Peak Position/eV Assignment
O 1s A 531.1 ± 0.2 C=O, P=O[20]
B 532.5 ± 0.3 C―O―C, P―O―C[21]
C 533.8 ± 0.2 P―O―P[22]
D 534.9 ± 0.2 chemisorbed O + H2O[23]
E 537.0 ± 0.5 ―OH[21]
2p A 132.8 ± 0.2 pyrophosphate[20, 21] and phosphonates[25]
B 134.0 ± 0.2 metaphosphate[20, 24]
C 136.0 P4O10[22]
Table 4 Types of functional groups and their binding energy based on the O 1s and P 2p XPS peaks
Fig 4 Chemical structures of pyrophosphate and metaphosphate[11]
SampleCm/(F•g-1)(GA)
1 mol•L-1 H2SO46 mol•L-1 KOH
0.1 A•g-11 A•g-10.1 A•g-11 A•g-12 A•g-15 A•g-110 A•g-1
HACP-800 179 151 168 153 149 142 136
ACP-700 158 132 158 145 140 130 117
ACP-800 185 156 185 171 165 154 140
ACP-900 172 145 164 152 147 137 124
CS 149 126 125 115 111 104 95
CS-800 152 132 136 127 124 116 106
Cm: specific capacitance; GA: galvanostatic charge/discharge
Table 5 Specific capacitance of the activated carbons at different current densities measured in 1 mol•L-1 H2SO4 and 6 mol•L-1 KOH electrolytes
Fig 5 Galvanostatic charge-discharge curves of the activated carbons recorded at different currentdensities measured in 6 mol•L-1 KOH electrolyte
Fig 6 Cyclic voltammogram curves of the activated carbons recorded at different scan rates measured in 6 mol•L-1 KOH electrolyte
SampleCm/(F•g-1)
5 mV•s-110 mV•s-120 mV•s-150 mV•s-1100 mV•s-1
HACP-800 159 154 150 143 135
ACP-700 150 146 141 130 117
ACP-800 175 171 165 153 138
ACP-900 156 153 148 138 127
CS 120 117 114 108 101
CS-800 131 129 125 119 110
Table 6 Specific capacitance of the activated carbons at different scan rates measured in 6 mol•L-1 KOH electrolyte by cyclic voltammograms method
Fig 7 Galvanostatic charge-discharge curves recorded at the current density of 0.1 A•g-1(a) and cyclic voltammograms recorded at the scan rate of 5 mV•s-1(b) for the activated carbons measured in 1 mol•L-1 H2SO4 electrolyte
Fig 8 (a) Nyquist impedance spectra of the activated carbons measured in 6 mol•L-1 KOH electrolyte and (b) equivalent circuit modeling
SampleRt/mΩRi/mΩRct/mΩRw/mΩ
HACP-800 641 368 127 146
ACP-700 951 456 76 419
ACP-800 992 521 168 303
ACP-900 994 398 244 302
CS 983 347 0 636
CS-800 1044 447 373 224
Table 7 Overall resistance Rt, Ri, Rct, and Rw measured in 6 mol•L-1 KOH electrolyte
Fig 9 Cyclic voltammograms of the activated carbons at a scan rate of 5 mV•s-1 measured in a three-electrode cell with different electrolytes
Fig 10 Correlation coefficient between the special surface area corresponding to the given pore width and the experimental capacitance at the current density of 0.1 A•g-1 measured in 6 mol•L-1 KOH electrolyte
Sample$\frac{{{S}_{1.57-0.59nm}}}{\left( {{\text{m}}^{\text{2}}}\cdot {{\text{g}}^{\text{ -1}}} \right)}$$\frac{{{S}_{1.10-1.61nm}}}{\left( {{\text{m}}^{\text{2}}}\cdot {{\text{g}}^{\text{ -1}}} \right)}$$\frac{{{S}_{2.12-2.43nm}}}{\left( {{\text{m}}^{\text{2}}}\cdot {{\text{g}}^{\text{ -1}}} \right)}$$\frac{{{S}_{3.94-4.37nm}}}{\left( {{\text{m}}^{\text{2}}}\cdot {{\text{g}}^{\text{ -1}}} \right)}$
HACP-800 91 119 57 22
ACP-700 68 92 39 33
ACP-800 48 92 48 37
ACP-900 59 80 51 41
CS 123 191 97 9
CS-800 165 182 78 3
Table 8 Special surface areas (S) corresponding to pores in the given width range calculated from N2 adsorption isotherms using QSDFT method
Current densitiyValue of the coefficients in the fitted equationa
(A•g-1)ABCDE
0.1 30.92 0.873 2.946 4.041 0.369
1 29.52 0.707 2.930 3.570 0.341
2 29.29 0.692 2.909 3.465 0.338
5 28.50 0.674 2.864 3.349 0.336
10 28.54 0.695 2.906 3.328 0.353
Scan rateValue of the coefficients in the fitted equationa
(mV•s-1)ABCDE
5 28.95 0.815 2.765 3.753 0.342
10 28.86 0.731 2.834 3.560 0.333
20 27.80 0.725 2.735 3.478 0.325
50 27.45 0.676 2.794 3.284 0.325
100 25.80 0.638 2.733 3.118 0.316
a PC=A × w (P)+B × S1.10-1.61 nm+C × S2.12-2.43 nm+ D × S3.94-4.37 nm-E × Rt; PC:capacitance
Table 9 Multiple linear regression model at different current densities and scan rates
Fig 11 Linear relation between predicted capacitance vs experimental capacitance of the activated carbons measured in 6 mol•L-1 KOH electrolyte
SampleSa/(m2•g-1)Sb/(m2•g-1)Sc/(m2•g-1)
HACP-800 12 57 7
ACP-700 7 95 3
ACP-800 54 106 3
ACP-900 41 119 3
CS 20 25 1
CS-800 0 10 1
Table 10 Special surface areas (S) corresponding to pores in the given width range calculated from N2 adsorption isotherms using QSDFT method
Fig 12 Linear relation between predicted capacitance vs experimental capacitance of the activated carbons measured in 1 mol•L-1 H2SO4 electrolyte
1 Wu Y. B. ; Bi J. ; Wei B. B Acta Phys. -Chim. Sin 2015, 31 (2), 315.
1 吴艳波; 毕军; 魏斌斌. 物理化学学报, 2015, 31 (2), 315.
2 Gryglewicz G. ; Machnikowski J. ; Lorenc-Grabowska E. ; Lota G. ; Frackowiak E Electrochim. Acta 2005, 50 (5), 1197.
3 Chmiola J. ; Yushin G. ; Dash R. ; Gogotsi Y. J Power Sources 2006, 158 (1), 765.
4 Raymundo-Piñero E. ; Kierzek K. ; Machnikowski J. ; Béguin F Carbon 2006, 44 (12), 2498.
5 Seredych M. ; Hulicova-Jurcakova D. ; Lu G. Q. ; Bandosz T. J Carbon 2008, 46 (11), 475.
6 Li Z. H. ; Li S. J. ; Zhou J. ; Zhu T. T. ; Shen H. L. ; Zhuo S. P Acta Phys. -Chim. Sin 2015, 31 (4), 676.
6 李朝辉; 李仕蛟; 周晋; 朱婷婷; 沈红龙; 禚淑萍. 物理化学学报, 2015, 31 (4), 676.
7 Zhou Y. ; Wang D. L. ; Xiao N. ; Hou Y. C. ; Qiu J. S Acta Phys. -Chim. Sin 2014, 30 (6), 1127.
7 周颖; 王道龙; 肖南; 侯雨辰; 邱介山. 物理化学学报, 2014, 30 (6), 1127.
8 Hulicova-Jurcakova D. ; Seredych M. ; Lu G. Q. ; Kodiweera N. K. A. C. ; Stallworth P. E. ; Greenbaum S. ; Bandosz T. J Carbon 2009, 47 (6), 1576.
9 Hulicova-Jurcakova D. ; Puziy A. M. ; Poddubnaya O. I. ; Suárez-Garcí a F. ; Tascón J. M. D. ; Lu G. Q. J Am. Chem. Soc 2009, 131 (14), 5026.
10 Huang C. C. ; Puziy A. M. ; Sun T. ; Poddubnaya O. I. ; Suárez-Garcí a F. ; Tascó n J. M. D. ; Hulicova-Jurcakova D Electrochim. Acta 2014, 137, 219.
11 Huang C. C. ; Sun T. ; Hulicova-Jurcakova D ChemSusChem 2013, 6 (12), 2330.
12 Neimark A. V. ; Lin Z. ; Ravikovitch P. I. ; Thommes M Carbon 2009, 47 (7), 1617.
13 Guo H. L. ; Gao Q. M. J Power Sources 2009, 186 (2), 551.
14 Puziy A. M. ; Poddubnaya O. I. ; Martínez-Alonso A. ; Suárez-Garcí a F. ; Tascón J. M. D Carbon 2002, 40 (9), 1493.
15 Puziy A. M. ; Poddubnaya O. I. ; Martínez-Alonso A. ; Suárez-Garcí a F. ; Tascón J. M. D Carbon 2005, 43 (14), 2857.
16 Puziy A. M. ; Poddubnaya O. I. ; Martív A. ; Castro-Muñiz A. ; Suárez-García F. ; Tascón J. M. D Carbon 2007, 45 (10), 1941.
17 Puziy A. M. ; Poddubnaya O. I. ; Sobiesiak M. ; Gawdzik B Adsorption 2013, 19, 717.
18 Sing K. S.W. ; Everett D. H. ; Haul R. A.W. ; Moscou L. ; Pierotti R. A. ; Rouquérol J. ; Siemieniewska T Pure Appl. Chem 1985, 57 (4), 603.
19 Frackowiak E. ; Béguin F Carbon 2001, 39 (6), 937.
20 Kannan A. G. ; Choudhury N. R. ; Dutta N. K Polymer 2007, 48 (24), 7078.
21 Puziy A. M. ; Poddubnaya O. I. ; Socha R. P. ; Gurgul J. ; Wisniewski M Carbon 2008, 46 (15), 2113.
22 Shih P. Y. ; Yung S.W. ; Chin T. S. J Non-Cryst. Solids 1999, 244 (2-3), 211.
23 Biniak S. ; Szymański G. ; Siedlewski J. ; Światkowski A Carbon 1997, 35, 12.
24 Barbaux Y. ; Dekiouk M. ; Maguer D. L. ; Gengembre L. ; Huchette D. ; Grimblot J Appl. Catal. A 1992, 90 (1), 51.
25 Van der Plas, T. Texture and Chemistry of Carbon Surface. InPhysical and Chemical Aspects of Adsorbents and Catalysts; Linsen, B. G. Ed.; Academic Press: London, 1970; Chapter 9.
26 Fuertes A. B. ; Pico F. ; Rojo J. M. J Power Sources 2004, 133 (2), 329.
27 Zhao X. ; Zhang Q. ; Chen C. M. ; Zhang B. ; Reiche S. ; Wang A. ; Zhang T. ; Schlö l R. ; Su D. S Nano Energy 2012, 1 (4), 624.
28 Gu W. ; Sevilla M. ; Magasinski A. ; Fuertes A. B. ; Yushin G Energy Environ. Sci 2013, 6 (8), 2465.
29 Zapata-Benabihe Z. ; Moreno-Castilla C. ; Carrasco-Marí n F Langmuir 2014, 30 (6), 1716.
30 Hulicova D. ; Kodama M. ; Hatori H Chem. Mater 2006, 18 (9), 2318.
31 Konno H. ; Ito T. ; Ushiro M. ; Fushimi K. ; Azumi K. J Power Sources 2010, 195 (6), 1739.
32 Shi H Electrochim. Acta 1996, 41 (10), 1633.
33 Zhi M. ; Yang F. ; Meng F. ; Li M. ; Manivannan A. ; Wu N ACS Sustainable Chem. Eng 2014, 2 (7), 1592.
[1] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[2] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[3] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[4] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 787-794.
[5] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[6] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 370-376.
[7] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 305-313.
[8] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2510-2516.
[9] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2245-2252.
[10] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[11] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 130-148.
[12] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 975-982.
[13] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 474-480.
[14] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 493-502.
[15] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 676-684.