Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (2): 573-580    DOI: 10.3866/PKU.WHXB201511105
ARTICLE     
Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials
Ting LI*(),Zhi-Hui LONG,Dao-Hong ZHANG*()
Download: HTML     PDF(3236KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Metal oxides are promising high-capacity anode materials for lithium and sodium-ion batteries because of the reversible multi-electron structural conversion reactions with lithium and sodium ions. In this study, Fe2O3/rGO (reduced graphene oxide) nanocomposites were prepared using graphene oxide sheets and ferric salt as precursors through a one-step solvothermal method. The experimental results demonstrated that the Fe2O3 nanocrystals were uniformly dispersed on the surface of reduced graphene oxide sheets. The nanocomposite anodes show superior charge-discharge performances and cyclability in lithium and sodium ion batteries, indicating that reduced graphene oxide sheets can reduce the charge-transfer resistance and stabilize the structure change during cycling. It suggests a potential feasibility to use these metal oxide nanocomposites as high capacity anode materials for lithium and sodium ion batteries.



Key wordsMetal oxide      Electrochemical conversion reaction      Lithium ion battery      Sodium ion battery      Anode material     
Received: 23 September 2015      Published: 10 November 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21403305);"Fundamental Research Funds for the CentralUniversities", South-Central University for Nationalities, China(CZQ14007)
Corresponding Authors: Ting LI,Dao-Hong ZHANG     E-mail: liting@mail.scuec.edu.cn;zhangdh27@163.com
Cite this article:

Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials. Acta Physico-Chimica Sinca, 2016, 32(2): 573-580.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511105     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I2/573

Fig 1 Schematic illustration of the formation process of the Fe2O3/rGO nanocomposite
Fig 2 XRD patterns of the Fe2O3/rGO composite and Fe2O3 sample
Fig 3 (a) Raman spectra of the GO sample and Fe2O3/ rGO composite; (b) thermogravimetric analysis (TGA) curve of the Fe2O3/rGO composite
Fig 4 (a, b) SEM and (c, d) TEM images of (a, c) Fe2O3 and (b, d) Fe2O3/rGO composite
Fig 5 (a) Discharge/charge profiles of the Fe2O3/rGO composite electrode between 0.01 and 3.00 V at a current density of 50 mA·g-1 (b) cycling curves of the Fe2O3/rGO and Fe2O3 electrodes at a current density of 100 mA·g-1(c) rate capability of the Fe2O3/rGO and Fe2O3 electrodes between 0.01 and 3.00 V at various current densities from 100 to 1000 mA·g-1 (d) cyclic voltammogram (CV) curves of the Fe2O3/rGO composite electrode from 0.01 to 3.00 V in 1 mol·L-1 LiPF6 + EC-DMC-EMC at a scan rate of 0.1 mV·s-1
Fig 6 Electrochemical impedance spectra (EIS) of (a) Fe2O3 and (b) Fe2O3/rGO electrodes after 1st and 20th cycles
CycleFe2O3Fe2O3/rGO
RSEIRct RSEIRct
1st cycle 4.98 25.8 3.23 15.3
20th cycle 1.12 34.3 0.59 15.0
Table 1 Simulation results of the EIS using the equivalent circuit
Fig 7 Electrochemical performances of the Fe2O3/rGO composite electrode in NaPF6 + EC-DEC solution
1 Palacín M. R Chem. Soc. Rev 2009, 38, 2565.
2 Gao X. P. ; Yang H. X Energy Environ. Sci 2010, 3, 174.
3 Bruce P. G. ; Scrosati B. ; Tarascon J. M Angew. Chem. Int. Edit 2008, 47, 2930.
4 Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878. doi: 10.1149/1.1801451
5 Cabana J. ; Monconduit L. ; Larcher D. ; Palací n M. R Adv. Mater 2010, 22, E170.
6 Li T. ; Li L. ; Cao Y. L. ; Ai X. P. ; Yang H. X. J Phys. Chem. C 2010, 114, 3190.
7 Li T. ; Chen Z. X. ; Cao Y. L. ; Ai X. P. ; Yang H. X Electrochimca Acta 2012, 68, 202.
8 Li T. ; Ai X. P. ; Yang H. X. J Phys. Chem. C 2011, 115, 6167.
9 Li T. ; Yang H. X. J. Electrochemistry 2015, 21, 115.
9 李婷; 杨汉西. 电化学, 2015, 21, 115.
10 Poizot P. ; Laruelle S. ; Grugeon S. ; Dupont L. ; Tarascon J Nature 2000, 407, 499.
11 Reddy M. V. ; Yu T. ; Sow C. H. ; Shen Z. X. ; Lim C. T. ; Rao G. V. S. ; Chowdari B. V. R Adv. Funct. Mater 2007, 17, 2792.
12 Zhu X. J. ; Zhu Y.W. ; Murali S. ; Stoller M. D. ; Ruoff R. S ACS Nano 2011, 5, 3333.
13 Zhang L. ; Wu H. B. ; Madhavi S. ; Hng H. H. ; Lou X. W J. Am. Chem. Soc 2012, 134, 17388.
14 Kim S.W. ; Seo D. H. ; Ma X. H. ; Ceder G. ; Kang K Adv. Energy Mater 2012, 2, 710.
15 Jian Z. L. ; Zhao B. ; Liu P. ; Li F. J. ; Zheng M. B. ; Chen M.W. ; Shi Y. ; Zhou H. S Chem. Commun 2014, 50, 1215.
16 Zhang N. ; Han X. P. ; Liu Y. C. ; Hu X. F. ; Zhao Q. ; Chen J Adv. Energy Mater 2015, 5, 1401123.
17 Zhang Z. J. ; Wang Y. X. ; Chou S. L. ; Li H. J. ; Liu H. K. ; Wang J. Z. J Power Sources 2015, 280, 107.
18 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K.M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S Nature 2006, 442, 282.
19 Miller J. R. ; Outlaw R. A. ; Holloway B. C Science 2010, 329, 1637.
20 Li, X. S.; Cai, W.W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
21 Geim A. K Science 2009, 324, 1530.
22 Xu J. ; Yang D. Z. ; Liao X. Z. ; He Y. S. ; Ma Z. F Acta Phys. -Chim. Sin 2015, 31, 913.
22 许婧; 杨德志; 廖小珍; 何雨石; 马紫峰. 物理化学学报, 2015, 31, 913.
23 Li D. ; Müller M. B. ; Gilje S. ; Kaner R. B. ; Wallace G. G Nature Nanotech 2008, 3, 101.
24 Ferrari A. C. ; Meyer J. C. ; Scardaci V. ; Casiraghi C. ; Lazzeri M. ; Mauri F Phys. Rev. Lett 2006, 97, 187401.
25 Paredes J. I. ; Villar-Rodil S. ; Solís-Ferná ndez P Langmuir 2009, 25, 5957.
26 Zhu J. X. ; Zhu T. ; Zhou X. Z. ; Zhang Y. Y. ; Lou X.W. ; Chen X. D. ; Zhang H. ; Hng H. H. ; Yan Q. Y Nanoscale 2011, 3, 1084.
27 Palomares V. ; Serras P. ; Villaluenga I. ; Hueso K. B. ; Carretero-González J. ; Rojo T Energy Environ. Sci 2012, 5, 5884.
28 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S Adv. Funct. Mater 2013, 23, 947.
[1] Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 219-226.
[2] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[3] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[4] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[5] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[6] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[7] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2261-2267.
[8] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2293-2300.
[9] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[10] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.
[11] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.
[12] Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1699-1707.
[13] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1489-1494.
[14] TANG Wei, WANG Jing. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1087-1104.
[15] ZHOU Li, ZHU Jun, XU Ya-Feng, SHAO Zhi-Peng, ZHANG Xu-Hui, YE Jia-Jiu, HUANG Yang, ZHANG Chang-Neng, DAI Song-Yuan. Influence of Insulating Oxide Coatings on the Performance of Perovskite Solar Cells and the Interface Charge Recombination Dynamics[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1207-1213.