Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 14-27    DOI: 10.3866/PKU.WHXB201511133
REVIEW     
Graphene Glass: Direct Growth of Graphene on Traditional Glasses
Xu-Dong CHEN1,Zhao-Long CHEN1,Jing-Yu SUN1,Yan-Feng ZHANG1,2,Zhong-Fan LIU1,*()
1 Center of NanoChemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
2 College of Engineering, Peking University, Beijing 100871, P. R. China
Download: HTML     PDF(8915KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Glass, an amorphous oxide material with a long history, is widely used in our daily life. Graphene is a novel two-dimensional material formed by carbon atoms. The unique properties of graphene, such as excellent mechanical strength, high electrical and thermal conductivity and optical transparency, serve as complementary components to those of glass. Therefore, the combination of graphene and glass would endow noticeable electrical/thermal conductivity and surface hydrophobicity without sacrificing the transparency of conventional glass. Previously reported routes for integrating graphene with glass mainly used solution-casting of liquid-exfoliated graphene nanoplatelets and transfer-coating of graphene films grown on metals. Compared with the existing methods, the direct growth of graphene on glass could avoid contamination and damage during the integration process, thereby resulting in good graphene quality and scalability, high thickness/ coverage uniformity, much reduced breakage density, and a tight and clean interface with the underlying glass. In this article, we review our recent progress on the direct growth of graphene on various glass by chemical vapor deposition (CVD). With the consideration of the thermo-stabilities of glass and application requirements, three different CVD routes are developed, i.e., high-temperature, atmospheric pressure CVD on solid-state thermostable glass and molten-state glass, as well as low-temperature plasma enhanced CVD on solid-state soda-lime floating glass. We also explore the practical applications of the as-grown graphene glass, where electrochromic windows, defoggers, cell proliferation, and photocatalytic plates were fabricated based on our CVD-grown graphene glass. The high performance of these devices promises practical usage of graphene glass in daily-life applications.



Key wordsGraphene      Solid-state glass      Molten glass      Chemical vapor deposition      Plasma enhanced     
Received: 01 January 2015      Published: 13 November 2015
MSC2000:  O647  
Fund:  the National Key Basic Research Program of China (973)(2013CB932603, 2012CB933404, 2011CB921903, 2013CB934600);National Natural Science Foundation of China(51432002, 51290272, 51121091, 51222201, 11222434);Ministry of Education ofChina(20120001130010);Beijing Municipal Science and Technology Planning Project, China(Z151100003315013)
Corresponding Authors: Zhong-Fan LIU     E-mail: zfliu@pku.edu.cn
Cite this article:

Xu-Dong CHEN,Zhao-Long CHEN,Jing-Yu SUN,Yan-Feng ZHANG,Zhong-Fan LIU. Graphene Glass: Direct Growth of Graphene on Traditional Glasses. Acta Phys. -Chim. Sin., 2016, 32(1): 14-27.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511133     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/14

Fig 1 Direct growth of graphene on thermostable glass at high temperature41
Fig 2 Adjustment of graphene growth on thermostable glasses41
Fig 3 Direct growth of graphene on molten glass at high temperature43
Fig 4 Investigation of graphene growth on molten glasses43
Fig 5 Direct growth of graphene on solid glass at relative low temperature by PECVD42
Fig 6 Growth of graphene on quartz at low temperature by PECVD61, 62
Fig 7 Applications of the graphene glasses41, 43
1 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
2 Novoselov K. S. ; Fal'ko V. I. ; Colombo L. ; Gellert P. R. ; Schwab M. G. ; Kim K. Nature 2012, 490, 192.
3 Yan K. ; Fu L. ; Peng H. ; Liu Z. Accounts Chem. Res. 2013, 46, 2263.
4 Bonaccorso F. ; Sun Z. ; Hasan T. ; Ferrari A. C. Nature Photon. 2010, 4, 611.
5 Geim A. K. ; Novoselov K. S. Nature Mater. 2007, 6, 183.
6 Geim A. K. Science 2009, 324, 1530.
7 Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. R. ; Geim A. K. Science 2008, 320, 1308.
8 Geim A. K. Rev. Mod. Phys. 2011, 83, 851.
9 Novoselov K. S. Rev. Mod. Phys. 2011, 83, 837.
10 Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
11 Du X. ; Skachko I. ; Barker A. ; Andrei E. Y. Nature Nanotech. 2008, 3, 491.
12 Seol J. H. ; Jo I. ; Moore A. L. ; Lindsay L. ; Aitken Z. H. ; Pettes M. T. ; Li X. ; Yao Z. ; Huang R. ; Broido D. ; Mingo N. ; Ruoff R. S. ; Shi L. Science 2010, 328, 213.
13 Bae S. ; Kim H. ; Lee Y. ; Xu X. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. ; Kim Y. J. ; Kim K. S. ; Ozyilmaz B. ; Ahn J. H. ; Hong B. H. ; Iijima S. Nature Nanotech. 2010, 5, 574.
14 Liu C. ; Yu Z. ; Neff D. ; Zhamu A. ; Jang B. Z. Nano Lett. 2010, 10, 4863.
15 Lin Y. M. ; Valdes-Garcia A. ; Han S. J. ; Farmer D. B. ; Meric I. ; Sun Y. ; Wu Y. ; Dimitrakopoulos C. ; Grill A. ; Avouris P. ; Jenkins K. A. Science 2011, 332, 1294.
16 Xia F. ; Mueller T. ; Lin Y. M. ; Valdes-Garcia A. ; Avouris P. Nature Nanotech. 2009, 4, 839.
17 Park J. ; Ahn Y. H. ; Ruiz-Vargas C. Nano Lett. 2009, 9, 1742.
18 Koppens F. H. L. ; Mueller T. ; Avouris P. ; Ferrari A. C. ; Vitiello M. S. ; Polini M. Nature Nanotech. 2014, 9, 780.
19 Yoo E. ; Kim J. ; Hosono E. ; Zhou H. S. ; Kudo T. ; Honma I. Nano Lett 2008, 8, 2277.
20 Xu M. ; Fujita D. ; Hanagata N. Small 2009, 5, 2638.
21 Garaj S. ; Hubbard W. ; Reina A. ; Kong J. ; Branton D. ; Golovchenko J. A. Nature 2010, 467, 190.
22 Xing F. ; Liu Z. B. ; Deng Z. C. ; Kong X. T. ; Yan X. Q. ; Chen X. D. ; Ye Q. ; Zhang C. P. ; Chen Y. S. ; Tian J. G. Sci. Rep. 2012, 2, 908.
23 Xing F. ; Meng G. X. ; Zhang Q. ; Pan L. T. ; Wang P. ; Liu Z. B. ; Jiang W. S. ; Chen Y. ; Tian J. G. Nano Lett. 2014, 14, 3563.
24 Xu W. ; Ling X. ; Xiao J. ; Dresselhaus M. S. ; Kong J. ; Xu H. ; Liu Z. ; Zhang J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9281.
25 Paton K. R. ; Varrla E. ; Backes C. ; Smith R. J. ; Khan U. ; O'Neill A. ; Boland C. ; Lotya M. ; Istrate O. M. ; King P. ; Higgins T. ; Barwich S. ; May P. ; Puczkarski P. ; Ahmed I. ; Moebius M. ; Pettersson H. ; Long E. ; Coelho J. ; O'Brien S. E. ; McGuire E. K. ; Sanchez B. M. ; Duesberg G. S. ; McEvoy N. ; Pennycook T. J. ; Downing C. ; Crossley A. ; Nicolosi V. ; Coleman J. N. Nature Mater. 2014, 13, 624.
26 Li X. ; Zhang G. ; Bai X. ; Sun X. ; Wang X. ; Wang E. ; Dai H. Nature Nanotech. 2008, 3, 538.
27 Dai B. ; Fu L. ; Zou Z. ; Wang M. ; Xu H. ; Wang S. ; Liu Z. Nature Commun. 2011, 2, 522.
28 Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; Banerjee S. K. ; Colombo L. ; Ruoff R. S. Science 2009, 324, 1312.
29 Kim K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K. S. ; Ahn J. H. ; Kim P. ; Choi J. Y. ; Hong B. H. Nature 2009, 457, 706.
30 Gao T. ; Xie S. ; Gao Y. ; Liu M. ; Chen Y. ; Zhang Y. ; Liu Z. ACS Nano 2011, 5, 9194.
31 Pan Y. ; Zhang H. ; Shi D. ; Sun J. ; Du S. ; Liu F. ; Gao H. J. Adv. Mater. 2009, 21, 2777.
32 Gao L. ; Ren W. ; Xu H. ; Jin L. ; Wang Z. ; Ma T. ; Ma L. P. ; Zhang Z. ; Fu Q. ; Peng L. M. ; Bao X. ; Cheng H. M. Nature Commun. 2012, 3, 699.
33 Coraux J. ; N'Diaye A. T. ; Busse C. ; Michely T. Nano Lett. 2008, 8, 565.
34 Chae S. J. ; Guenes F. ; Kim K. K. ; Kim E. S. ; Han G. H. ; Kim S. M. ; Shin H. J. ; Yoon S. M. ; Choi J. Y. ; Park M. H. ; Yang C. W. ; Pribat D. ; Lee Y. H. Adv. Mater. 2009, 21, 2328.
35 Li X. ; Cai W. ; Colombo L. ; Ruoff R. S. Nano Lett. 2009, 9, 4268.
36 Chen J. S. ; Wu B. ; Liu Y. Q. Acta Chim. Sin. 2014, 72, 355.
36 陈集思; 武斌; 刘云圻. 化学学报, 2014, 72, 355.
37 Liu N. ; Fu L. ; Dai B. ; Yan K. ; Liu X. ; Zhao R. ; Zhang Y. ; Liu Z. Nano Lett. 2011, 11, 297.
38 Liu M. ; Zhang Y. ; Chen Y. ; Gao Y. ; Gao T. ; Ma D. ; Ji Q. ; Zhang Y. ; Li C. ; Liu Z. ACS Nano 2012, 6, 10581.
39 Zhang C. H. ; Fu L. ; Zhang Y. F. ; Liu Z. F. Acta Chim. Sin. 2013, 71, 308.
39 张朝华; 付磊; 张艳锋; 刘忠范. 化学学报, 2013, 71, 308.
40 Zou Z. Y. ; Dai B. Y. ; Liu Z. F. Sci. Sin. Chim. 2012, 42, 1.
40 邹志宇; 戴博雅; 刘忠范. 中国科学:化学, 2012, 42, 1.
41 Sun J. ; Chen Y. ; Priydarshi M. K. ; Chen Z. ; Bachmatiuk A. ; Zou Z. ; Chen Z. ; Song X. ; Gao Y. ; Ruemmeli M. H. ; Zhang Y. ; Liu Z. Nano Lett. 2015, 15, 5846.
42 Sun J. ; Chen Y. ; Cai X. ; Ma B. ; Chen Z. ; Priydarshi M. K. ; Chen K. ; Gao T. ; Song X. ; Ji Q. ; Guo X. ; Zou D. ; Zhang Y. ; Liu Z. Nano Res.
43 Chen Y. ; Sun J. ; Gao J. ; Du F. ; Han Q. ; Nie Y. ; Chen Z. ; Bachmatiuk A. ; Priydarshi M. K. ; Ma D. ; Song X. ; Wu X. ; Xiong C. ; Ruemmeli M. H. ; Ding F. ; Zhang Y. ; Liu Z. Adv. Mater.
44 Bhaviripudi S. ; Jia X. ; Dresselhaus M. S. ; Kong J. Nano Lett. 2010, 10, 4128.
45 Zhao P. ; Kumamoto A. ; Kim S. ; Chen X. ; Hou B. ; Chiashi S. ; Einarsson E. ; Ikuhara Y. ; Maruyama S. J. Phys. Chem. C 2013, 117, 10755.
46 Zhao P. ; Kim S. ; Chen X. ; Einarsson E. ; Wang M. ; Song Y. ; Wang H. ; Chiashi S. ; Xiang R. ; Maruyama S. ACS Nano 2014, 8, 11631.
47 Chen J. ; Guo Y. ; Jiang L. ; Xu Z. ; Huang L. ; Xue Y. ; Geng D. ; Wu B. ; Hu W. ; Yu G. ; Liu Y. Adv. Mater. 2014, 26, 1348.
48 Wei D. ; Lu Y. ; Han C. ; Niu T. ; Chen W. ; Wee A. T. S. Angew. Chem. Int. Edit. 2013, 52, 14121.
49 Hwang J. ; Kim M. ; Campbell D. ; Alsalman H. A. ; Kwak J. Y. ; Shivaraman S. ; Woll A. R. ; Singh A. K. ; Hennig R. G. ; Gorantla S. ; Ruemmeli M. H. ; Spencer M. G. ACS Nano 2013, 7, 385.
50 Chen J. ; Wen Y. ; Guo Y. ; Wu B. ; Huang L. ; Xue Y. ; Geng D. ; Wang D. ; Yu G. ; Liu Y. J. Am. Chem. Soc. 2011, 133, 17548.
51 Sun J. ; Gao T. ; Song X. ; Zhao Y. ; Lin Y. ; Wang H. ; Ma D. ; Chen Y. ; Xiang W. ; Wing J. ; Zhang Y. ; Liu Z. J. Am. Chem. Soc. 2014, 136, 6574.
52 Teng P. Y. ; Lu C. C. ; Akiyama-Hasegawa K. ; Lin Y. C. ; Yeh C. H. ; Suenaga K. ; Chiu P. W. Nano Lett. 2012, 12, 1379.
53 Kim H. ; Song I. ; Park C. ; Son M. ; Hong M. ; Kim Y. ; Kim J. S. ; Shin H. J. ; Baik J. ; Choi H. C. ACS Nano 2013, 7, 6575.
54 Dong X. ; Wang P. ; Fang W. ; Su C. Y. ; Chen Y. H. ; Li L. J. ; Huang W. ; Chen P. Carbon 2011, 49, 3672.
55 Tan L. ; Zeng M. ; Wu Q. ; Chen L. ; Wang J. ; Zhang T. ; Eckert J. ; Ruemmeli M. H. ; Fu L. Small 2015, 11, 1840.
56 Geng D. ; Wu B. ; Guo Y. ; Huang L. ; Xue Y. ; Chen J. ; Yu G. ; Jiang L. ; Hu W. ; Liu Y. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 7992.
57 Zeng M. ; Tan L. ; Wang J. ; Chen L. ; Ruemmeli M. H. ; Fu L. Chem. Mater. 2014, 26, 3637.
58 Wang J. ; Zeng M. ; Tan L. ; Dai B. ; Deng Y. ; Rümmeli M. ; Xu H. ; Li Z. ; Wang S. ; Peng L. ; Eckert J. ; Fu L. Sci. Rep. 2013, 3, 2670.
59 Guqiao D. ; Yun Z. ; Shumin W. ; Qian G. ; Lei S. ; Tianru W. ; Xiaoming X. ; Mianheng J. Carbon 2013, 53, 321.
60 Munoz R. ; Gomez-Aleixandre C. J. Phys. D: Appl. Phys 2014, 47.
61 Zhang L. ; Shi Z. ; Wang Y. ; Yang R. ; Shi D. ; Zhang G. Nano Res. 2011, 4, 315.
62 Medina H. ; Lin Y. C. ; Jin C. ; Lu C. C. ; Yeh C. H. ; Huang K. P. ; Suenaga K. ; Robertson J. ; Chiu P. W. Adv. Funct. Mater. 2012, 22, 2123.
63 Yang C. ; Bi H. ; Wan D. ; Huang F. ; Xie X. ; Jiang M. J. Mater. Chem. A 2013, 1, 770.
64 Zhu M. Y. ; Outlaw R. A. ; Bagge-Hansen M. ; Chen H. J. ; Manos D. M. Carbon 2011, 49, 2526.
65 Wang J. ; Fang Z. ; Zhu H. ; Gao B. ; Garner S. ; Cimo P. ; Barcikowski Z. ; Mignerey A. ; Hu L. Thin Solid Films 2014, 556, 13.
66 Sui D. ; Huang Y. ; Huang L. ; Liang J. ; Ma Y. ; Chen Y. Small 2011, 7, 3186.
67 Ryoo S. R. ; Kim Y. K. ; Kim M. H. ; Min D. H. ACS Nano 2010, 4, 6587.
68 Huang X. ; Qi X. ; Boey F. ; Zhang H. Chem. Soc. Rev. 2012, 41, 666.
69 Chang H. ; Wu H. Energy Environ. Sci. 2013, 6, 3483.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[2] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[5] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[6] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[7] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[10] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[11] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[13] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[14] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.
[15] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.