Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 380-390    DOI: 10.3866/PKU.WHXB201511193
ARTICLE     
Preparation and Property of Gold Nanoparticles from Muliple Self-Assembled Structures as Templates in LA/C14DMAO/H2O System
Lei FENG,Jing-Cheng HAO*()
Download: HTML     PDF(16951KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Rich phase behavior was observed in salt-free cationic/anionic (catanionic) surfactant mixtures of lauric acid (LA) with a nonionic surfactant, tetradecyldimethylamine oxide (C14DMAO), in water. The phase behavior and microstructures of the LA/C14DMAO/H2O system were investigated by freeze-fracture transmission electron microscope (FF-TEM), polarized optical microscope (POM), differential scanning calorimetry (DSC), rheological measurements, and [2]H NMR. A variety of self-assembled microstructures were determined, including micelles (L1 phase), lamellae (Lαl phase), vesicles (Lαν phase) and gels. Using the L1 and Lαl phases as the templates, gold nanoparticles could be produced, as confirmed by transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). Compared with the traditional method of preparing Au nanomaterials in aqueous solutions, this method can avoid the addition of NaBH4 as a reducing agent. The sample solution plays roles as a template and a reductant and the reduction process does not destroy the original self-assembled microstructures in the solution. Hence, by controlling the aggregate structures of the template solution, one can achieve the goal of regulating the morphology of Au nanomaterials, which provides a new path for the preparation of noble metal nanostructured materials with different shapes and structures. The results of the methyl thiazolyl tetrazolium (MTT) assay with HK-2 cells show that, as a gene carrier, spherical Au-nanoparticles prepared in a micellar phase possess the characteristics of higher loading efficiency and lower toxicity than those obtained in traditional surfactant systems, demonstrating potential applications in gene therapy.



Key wordsLauric acid      Tetradecyldimethylamine oxide      Phase behavior      Template      Au nanomaterial     
Received: 12 October 2015      Published: 19 November 2015
MSC2000:  O648  
Fund:  the National Natural Science Foundation of China(2140102006, 21273134);Shandong Provincial Natural ScienceFoundation, China(ZR2013BQ025)
Corresponding Authors: Jing-Cheng HAO     E-mail: jhao@sdu.edu.cn
Cite this article:

Lei FENG,Jing-Cheng HAO. Preparation and Property of Gold Nanoparticles from Muliple Self-Assembled Structures as Templates in LA/C14DMAO/H2O System. Acta Phys. -Chim. Sin., 2016, 32(1): 380-390.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511193     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/380

Fig 1 (a) Phase diagram of LA/C14DMAO/H2O system; (b) conductivity (κ)  (▲) and pH (△) data of LA/C14DMAO/H2O system at a fixed concentration of C14DMAO ($^c{C_{14}}DAMO$= 60 mmol·L–1) with varying LA concentration (cLA)
Fig 2 Schematic representation of hydrogen bonding and electrostatic force in LA/C14DMAO/H2O system (a) hydrogen bond between C14DMAO and C14DMAOH+, (b) hydrogen bond between both C14DMAOH+ cations, (c) electrostatic force between cationic C14DMAOH+ and anionic L
Fig 3 Photographs of LA/C14DMAO/H2O sample solutions without crossed polarizers
Fig 4 Micrograph images of aggregates in LA/C14DMAO/H2O system
Fig 5 Oscillatory shear rheological curves of Lα phase samples in LA/C14DMAO/H2O system
Fig 6 Steady shear rheological curves of La phase samples in LA/C14DMAO/H2O system
Fig 7 (a) Differential scanning calorimetry (DSC) curves of hydrogel samples in LA/C14DMAO/H2O system with 60 mmol·L–1 C14DMAO with different LA concentrations of 45, 47.5, 50, 52.5, and 55 mmol·L–1, (b) gel transition temperature (Tg) as a function of LA concentration with 60 mmol·L–1 C14DMAO
Fig 8 2H NMR spectra of LA/C14DMAO/H2O system with different LA concentrations
Fig 9 TEM images of AuNPs prepared in (a) L1 phase solution of 60 mmol·L–1 C14DMAO/10 mmol·L–1 LA and (b) Lαl phase solution of 60 mmol·L–1 C14DMAO/30 mmol·L–1 LA; photographs of typical samples without (c) and with (d) crossed polarizers before (left) and after (right) the addition of HAuCl4; EDS spectra of Au NPs prepared in 60 mmol·L–1 C14DMAO/30 mmol·L–1 LA (e) and 60 mmol·L–1 C14DMAO/10 mmol·L–1 LA solution (f)
Fig 10 Schematic diagrams of the formation of Au NPs prepared from HAuCl4 reduced by the protonation cation C14DMAOH+ in LA/C14DMAO/H2O system
Fig 11 (a) UV-Vis absorption spectra of Au NPs and Au NPs/DNA solutions; (b) UV-Vis absorption spectra of Au NPs/DNA solutions at a fixed DNA concentration of 0.5 mmol·L–1 with varying Au NPs concentration; (c) phase diagrams of Au NPs/DNA and C14DMAOH+/DNA solutions at a fixed DNA concentration of 0.5 mmol·L–1 with varying Au NPs and C14DMAOH+ concentration ((○) single-phase solution and (●) phase-separated solutions); (d) comparison of the percent inhibition curves of TTAB, C14DMAOH+, and Au NPs on HK-2 cell proliferation
1 Kaler E. W. ; Murthy A. K. ; Rodriguez B. E. ; Zasadzinski J. A. N. Science 1989, 245, 1371.
2 Morigaki K. ; Dallavalle S. ; Walde P. ; Colonna S. ; Luisi P. L. J. Am. Chem. Soc 1997, 119, 292.
3 Bergstrøm M. P. ; Pedersen J. S. Langmuir 1999, 15, 2250.
4 Horbaschek K. H. ; Hoffmann H. ; Hao J. J. Phys. Chem. B 2000, 104, 2781.
5 Campbell S. E. ; Zhang Z. ; Friberg S. E. ; Patel R. Langmuir 1998, 14, 590.
6 Horbaschek K. ; Hoffmann H. ; Thunig C. J. Colloid Interface Sci 1998, 206, 439.
7 Hao J. ; Li H. ; Liu W. ; Hirsch A. Chem. Commun 2004, No 5, 602.
8 Song S. ; Feng L. ; Song A. ; Hao J. J. Phys. Chem. B 2012, 116, 12850.
9 Song, S.; Zheng, Q.; Song, A.; Hao, J. Langmuir 2012, 28, 219.
10 Jiang Y. ; Geng T. ; Li Q. ; Li G. ; Ju H. Colloids Surf. A 2014, 462, 27.
11 Ghosh S. ; Ray A. Ind. Eng. Chem. Res 2015, 54, 1953.
12 Gao J. ; Bender C. M. ; Murphy C. J. Langmuir 2003, 19, 9065.
13 Murphy C. J. ; Jana N. R. Adv. Mater 2002, 14, 80.
14 Lu C. ; Wu N. ; Jiao X. ; Luo C. ; Cao W. Chem. Commun 2003, No 9, 1056.
15 Huang X. ; El-Sayed M. A. Lasers Med. Sci 2008, 23, 217.
16 Wei Q. ; Ji J. ; Shen J. J. Nanosci. Nanotechnol 2008, 8, 5708.
17 Xiao J. ; Qi L. Nanoscale 2011, 3, 1383.
18 Cai W. ; Fu G. ; Li C. ; Zhang L. ; Kan C. Appl. Phys. A 2004, 78, 1187.
19 Loubat A. ; Lacroix L. M. ; Robert A. ; Impéror-Clerc M. ; Poteau R. ; Maron L. ; Arenal R. ; Pansu B. ; Viau G. J. Phys. Chem. C 2015, 119, 4422.
20 Jana N. R. ; Gearheart L. ; Murphy C. J. Adv. Mater 2001, 13, 1389.
21 Xu L. ; Feng L. ; Dong R. ; Hao J. ; Dong S. Biomacromolecules 2013, 14, 2781.
22 Teng M. ; Song A. ; Liu L. ; Hao J. J. Phys. Chem. B 2008, 112, 1671.
23 Leontidis E. K. K. ; Kyprianidou-Leodidou T. ; Bekiari V. ; Lianos P. Langmuir 2002, 18, 3659.
24 Zanchet D. ; Micheel C. M. ; Parak W. J. ; Gerion D. ; Alivisatos A. P. Nano Lett 2001, 1, 32.
25 Gao H. ; Kong Y. ; Cui D. ; Ozkan C. S. Nano Lett 2003, 3, 471.
26 Wu H. ; Liu H. ; Tan S. ; Yu J. ; Zhao W. ; Wang L. ; Liu Q. J. Phys. Chem. C 2014, 118, 26825.
27 Maeda H. Colloids Surf. A 1996, 109, 263.
28 Song A. ; Dong S. ; Jia X. ; Hao J. ; Liu W. ; Liu T. Angew. Chem. Int. Edit 2005, 117, 4086.
29 Hoffmann H. Adv. Mater 1994, 6, 116.
30 Wang L. ; Liu J. ; Exarhos G. J. ; Flanigan K. Y. ; Bordia R. J. Phys. Chem. B 2000, 104, 2810.
31 Li Q. ; Li T. ; Wu J. J. Phys. Chem. B 2000, 104, 9011.
32 Kondo, Y.; Miyazawa, H.; Sakai, H.; Abe, M.; Yoshino, N. J. Am. Chem. Soc. 2002, 124, 6516. doi: 10.1021/ja0178564.
33 Medronho B. ; Shafaei S. ; Szopko R. ; Miguel M. G. ; Olsson U. ; Schmidt C. Langmuir 2008, 24, 6480.
34 Liu C. ; Hao J. ; Wu Z. J. Phys. Chem. B 2010, 114, 9795.
35 Alexandridis P. ; Zhou D. ; Khan A. Langmuir 1996, 12, 2690.
36 Niu J. ; Wang D. ; Qin H. ; Xiong X. ; Tan P. ; Li Y. ; Liu R. ; Lu X. ; Wu J. ; Zhang T. ; Ni W. ; Jin J. Nature Commun 2014, 5, 3313.
37 Pileni M. P. Nat. Mater 2003, 2, 145.
38 Dong, R.; Liu, W.; Hao, J. Accounts Chem. Res. 2012, 45, 504. doi: 10.1021/ar200124g.
[1] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1288-1296.
[2] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[3] Wen-Hui XIONG,Wen-Chao ZHANG,Chun-Pei YU,Rui-Qi SHEN,Jia CHENG,Jia-Hai YE,Zhi-Chun QIN. Preparation of Nanoporous CoFe2O4 and Its Catalytic Performance during the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2093-2100.
[4] Xing-Zhong GUO,Li DING,Huan YU,Jia-Qi SHAN,Hui YANG. Construction and Preparation Mechanism of Hierarchically Porous SiO2 Monoliths[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1727-1733.
[5] Shu-Heng ZHAO,Lin LANG,Jun-Fei JIANG,Xiu-Li YIN,Chuang-Zhi WU. Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 519-526.
[6] Dan LIU,Yan-Yan HU,Chao ZENG,De-Yu QU. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2826-2840.
[7] ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 793-799.
[8] CHEN Li, XUE Teng, ZHU Shu-Yan, WANG Yi-Meng. One-Step Synthesis of Hierarchical ZSM-5 Zeolite Microspheres Using Alkyl-Polyamines as Single Templates[J]. Acta Phys. -Chim. Sin., 2015, 31(1): 181-188.
[9] XU Jing, QIANG Jin-Feng, WANG Rui-Juan, NIU Wen-Jun, SHEN Ming. Controllable Preparation of Rambutan-Shape AlOOH/Al2O3 Nanomaterials with a Composite Soft Template[J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2286-2294.
[10] NING Hui, HOU Min-Qiang, MEI Qing-Qing, YANG De-Zhong, HAN Bu-Xing. Phase Behaviors of 1-Butyl-3-methylimidazolium Hexafluorophosphate+Water+Alcohol Systems[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 678-682.
[11] CAI Hong-Min, REN Su-Zhen, WANG Meng, JIA Cui-Ying. Preparation and Properties of Monodisperse SnO2 Hollow Micro/Nano Spheres[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 881-888.
[12] HONG Zhou-Qin, LI Jin-Xia, ZHANG Fang, ZHOU Li-Hui. Synthesis of Magnetically Graphitic Mesoporous Carbon from Hard Templates and Its Application in the Adsorption Treatment of Traditional Chinese Medicine Wastewater[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 590-596.
[13] HONG Xiao-Ting, WU Xiao-Hui, MO Ming-Yue, LUO Zhi-Ping, HUI Kwan San, CHEN Hong-Yu, LI Lai-sheng, HUI Kwun Nam, ZHANG Qiu-Yun. Synthesis and Electrochemical Capacitive Performances of Novel Hierarchically Micro-Meso-Structured Porous Carbons Fabricated Using Microporous Rod-Like Hydroxyapatites as a Template[J]. Acta Phys. -Chim. Sin., 2013, 29(02): 298-304.
[14] WANG Guan-Yao, YAN Wei-Wei, ZHANG Xiao-Hong, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis and Spectral Properties of Salen-Porphyrin Type Homo- and Hetero-Binuclear Complexes with π-Conjugate Configuration[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2774-2782.
[15] GAO Ji-Ning, ZHAO Hua-Bo, QI Li-Min. Synthesis of Silver Sulfide Hollow Sphere-Silver Nanoparticle Heterostructures Based on Reactive Templates[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2487-2492.