Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (2): 565-572    DOI: 10.3866/PKU.WHXB201511301
ARTICLE     
FTIR-ATR Spectrometry of BSA Adsorption on Hydroxyapatite
Qing YE2,Ren HU1,Jian-Zhang ZHOU1,Yi-Wen YE1,Zhao-Xi XU3,Chang-Jian LIN1,Zhong-Yu LIN1,*()
1 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
2 Chuyang Honors College, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, P. R. China
3 Xiamen AERTE System Engineering CO., LTD, Xiamen 361005, Fujian Province, P. R. China
Download: HTML     PDF(1039KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The microcosmic process of bovine serum albumin (BSA) adsorbing onto hydroxyapatite (HA) for different time intervals was investigated by Fourier transform infrared attenuated total internal reflectance (FTIRATR) spectrometry. The initial dissolution and re-precipitation of PO43-, Ca2+, and OH- ions from the HA coating led to the occurrence of the coating including adsorbed BSA on the HA from surface-to subsurface-molecular layers and to in-depth interaction between BSA and HA. The subtraction results gained in the adsorption regions of HA and BSA reveal that the binding of P=O, from the phosphate (PO43-), to the hydrogen of amide II, methyl and methene of the BSA appears to be considerably more rapid and stronger than that of the P―O group. In addition, it is very likely that Ca2+ plays an important role in the interaction of BSA with HA. It appears that the binding of Ca2+ to the carbonyl-oxygen of the peptide bond in BSAcaused a significant, molecular, conformational rearrangement of polypeptide backbones from β-pleated sheet to helical circles of α-helix and β-turn. This change appears to have been followed by much hydrogen of polypeptides being driven to bind PO43- and OHeffectively and much ―C=O and H―N―groups of the peptide bond being freed from inter-chain hydrogenbonding to act on Ca2+ and combine strongly with the HA surface. This might reasonably be expected to promote hard tissue regeneration. BSA seems to be activated by the inductive effect of Ca2+ via the molecular rearrangement of polypeptide backbones from pleated sheet to helical circles and in turn reacts strongly on the HA, resulting in profound effects on the course of biomineralization.



Key wordsBiomaterial      Protein adsorption      Polypeptide      IR spectroscopy      FTIR-ATR      Biomineralization     
Received: 02 July 2015      Published: 30 November 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51571169)
Corresponding Authors: Zhong-Yu LIN     E-mail: stzylin@xmu.edu.cn
Cite this article:

Qing YE,Ren HU,Jian-Zhang ZHOU,Yi-Wen YE,Zhao-Xi XU,Chang-Jian LIN,Zhong-Yu LIN. FTIR-ATR Spectrometry of BSA Adsorption on Hydroxyapatite. Acta Physico-Chimica Sinca, 2016, 32(2): 565-572.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511301     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I2/565

Fig 1 FTIR-ATR spectra of HA coated on Ge crystal and reacted with BSA for different time
Fig 2 FTIR-ATR spectra of HA coating and reacted with BSA for different time
Fig 3 FTIR-ATR subtraction results of HA reacted with BSA for different time
Fig 4 FTIR-ATR difference spectra of BSA reacted with HA for different time
Fig 5 FTIR-ATR subtraction results of BSA reacted with HA for 30 h
1 Moulton S. E. ; Barisci J. N. ; McQuillan A. J. ; Wallace G. G Colloid. Surf. A: Physicochem. Eng. Asp 2003, 220, 159.
2 Lenk T. J. ; Ratner B. D. ; Gendreau R. M. ; Chittur K. K J. Biomed. Mater. Res 1989, 23, 549.
3 Shen Y. H. ; Yang Z. L. ; Wu J. G Acta Phys. -Chim. Sin 1999, 15 (12), 1064.
3 沈玉华; 杨展澜; 吴瑾光. 物理化学学报, 1999, 15 (12), 1064.
4 沈玉华,杨展澜,吴瑾光.北京大学学报(自然科学版), 1999, 35 (4), 431.
4 Shen, Y. H.; Yang, Z. L.; Wu, J. G. 1999, 35 (4), 431.
5 Elangovan S. ; Margolis H. C. ; Oppenheim F. G. ; Beniash E Langmuir 2007, 23 (22), 11200.
6 Ong J. L. ; Chittur K. K. ; Lucas L. C. J Biomed. Mater. Res 1994, 28, 1337.
7 Yang Q. ; Zhang Y. Y. ; Liu M. L. ; Ye M. ; Zhang Y. Q. ; Yao S. Z Analytica Chimica Acta 2007, 597, 58.
8 Zeng H. T. ; Chittur K. K. ; Lacefield W. R Biomaterials 1999, 20, 377.
9 Feng B. ; Chen J. Y. ; Zhang X. D Biomaterials 2002, 23 (12), 2499.
10 Ye Q. ; Hu R. ; Lin Z. Y. ; Lin C. J. Chem. J. Chin. Univ 2006, 27 (8), 1552.
10 叶青; 胡仁; 林种玉; 林昌健. 高等学校化学学报, 2006, 27 (8), 1552.
11 严衍禄,金泽宸.傅里叶变换光谱在农业、食品和生物学研究中的应用;近代傅里叶变换红外光谱技术及应用(下卷).吴瑾光主编.北京:科学技术文献出版社, 1994: 177-180.
11 Yan, Y. L.; Jin, Z. C. Applications of Fourier TransformInfrared Spectrometry in Researches of Agriculture, Food andBiology. In Modern Fourier-Transform Infrared Spectrometry and Its Applications (Part II); 1st ed.; Wu, J. G. Ed.; Literatureof Science and Technology Press: Beijing, 1994; pp 177-180.
12 Maruyama T. ; Katoh S. ; Nakajima M. ; Nabetani H. ; Abbott T. P. ; Shono A. ; Satoh K. J Membr. Sci 2001, 192, 201.
13 Bellamy, L. J. The Infra-red Spectra of Complex Molecules, 3rd ed.; Chapman and Hall: London, 1975; pp 14-26, 107-125, 183-202, 386.
14 Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Infraredspectrometry. In Spectrometric Identification of Organic Compounds, 5th ed.; Sawicki, D., Stiefel, J. Eds.; Wiley: NewYork, 1991; pp 103, 123.
15 Rao, C. N. R. Chemical applications of Infrared Spectroscopy.1st ed.; Academic Press Inc.: New York, 1963; pp 131-138, 255-262, 480-495.
16 Driessens F. C. M. ; van Dijk J.W. E. ; Borggreven J. M. P. M Calcif. Tissue Res 1978, 26, 127.
17 Clark G. C. F. ; Williams D. F. J Biomed. Mater. Res 1982, 16 (2), 125.
18 Ong J. L. ; Lucas L. C Biomaterials 1998, 19 (4-5), 455.
19 Margolis H. C. ; Moreno E. C Calcif. Tissue Int 1992, 50 (2), 137.
20 Chittur, K. K. Biomaterials 1998, 19 (4-5), 357. doi: 10.1016/S0142-9612(97)00223-8
21 周筠梅,施鼐.傅里叶变换红外光谱在生物化学中的应用;近代傅里叶变换红外光谱技术及应用(下卷).吴瑾光主编.北京:科学技术文献出版社, 1994: 193-212.
21 Zhou, J. M.; Shi, N. Applications of Fourier TransformInfrared Spectrometry in Biochemistry. In Modern Fouriertransform Infrared Spectrometry and Its Applications (Part II), 1st ed.; Wu, J. G. Ed.; Literature of Science and TechnologyPress: Beijing, 1994; pp 193-212.
22 Alvarez J. ; Haris P. I. ; Lee D. C. ; Chapman D. Biochimica Et Biophysica Acta 1987, 916 (1), 5.
23 徐长法.生物化学(上册).沈同,王镜岩主编.北京:高等教育出版社, 1990: 146-150.
23 Xu, C. F. Proteins. In Biochemistry (Book One), 2nd ed.; Shen, T.; Wang, J. Y. Eds.; Higher Education Press: Beijing, 1990; pp 146-150.
24 Hauschka P. V Haemostasis 1986, 16 (3-4), 258.
25 Prestrelski S. J. ; Byler D. M. ; Thompson M. P Biochemistry 1991, 30 (36), 8797.
26 Fronticelli C. ; Bucci E. ; Shamoo A. E Biophys. Chem 1984, 19 (3), 255.
27 Inesi G Annu. Rev. Physiol 1985, 47, 573.
28 Wu G. R. ; Gao Z. Y. ; Dong A. C. ; Yu S. N. Int. J. Biol. Macromol 2012, 50 (4), 1011.
29 Zhao Y.W. ; Yang H. Y. ; Meng K. J. ; Yu S. N. Int. J. Biol. Macromol 2014, 64, 453.
30 俞梅敏.生物化学(上册).沈同,王镜岩主编.北京:高等教育出版社, 1990: 447-455.
30 Yu, M. M. Hormones. In Biochemistry (Book One), 2nd ed.; Shen, T., Wang, J. Y. Eds.; Higher Education Press: Beijing, 1990; pp 447-455.
31 Morrissey B.W. ; Stromberg R. R. J Colloid. Interface Sci 1974, 46 (1), 152.
32 Lin Z. Y. ; Xue R. ; Ye Y.W. ; Zheng J. H. ; Xu Z. L BMC Biotechnol 2009, 9, 62.
33 Lin Z. Y. ; Ye Y.W. ; Li Q. L. ; Xu Z. L. ; Wang M BMC Biotechnol 2011, 11, 98.
34 周维金,王毅.红外光谱法在无机和配位化学基础研究中的应用;近代傅里叶变换红外光谱技术及应用(下卷).吴瑾光主编.北京:科学技术文献版社, 1994: 292-296.
34 Zhou, W. J.; Wang, Y. Applications of Infrared Spectrometry inBasic Researches of Inorganic and Coordination Chemistry. InModern Fourier-transform Infrared Spectrometry and Its Applications (Part II), 1st ed.; Wu, J. G. Ed.; Literature ofScience and Technology Press: Beijing, 1994; pp 292-296.
35 Barth A Prog. Biophys. Mol. Biol 2000, 74 (3-5), 141.
36 Farkas V. ; Vass E. ; Hanssens I. ; Majer Z. ; Hollosi M Bioorg. Med. Chem 2005, 13 (17), 5310.
37 Rahmelow K. ; Hübner W. ; Ackermann T. Anal. Biochem 1998, 257 (1), 1.
38 Shai Y Biochim. Biophys. Acta-Biomembr 2013, 1828 (10), 2306.
39 Kay M. I. ; Young R. A. ; Posner A. S Nature 1964, 204, 1050.
40 Hauschka P. V. ; Carr S. A Biochemistry 1982, 21 (10), 2538.
41 Hauschka, P. V. Osteocalcin and Its Functional Domains. InThe Chemistry and Biology of Mineralized Tissues; Butler, W.T. Ed.; EBSCO Media: Birmingham, 1985; pp 149-158.
42 Horbett, T. A. Protein Adsorption on Biomaterials. InBiomaterials: Interface Phenomena and Applications; Cooper, S. L., Peppas, N. A. Eds.; American Chemical Society:Washington DC, 1982; pp 233-244.
43 Davies, J. E. The importance and Measurement of SurfaceCharge Species in Cell Behavior at the Biomaterial Interface.In Surface Characterization of Biomaterials; Ratner, B. D.Ed.; Elsevier: Amsterdam, 1988; pp 219-222.
44 Ono I. ; Gunji H. ; Kaneko F. ; Saito T. ; Kuboki Y J. Craniofac. Surg 1995, 6 (3), 238.
45 El-Ghannam, A.; Ducheyne, P.; Shapiro, I. M. Trans 21st Annual Meeting of Society for Biomaterials 1995, 46.
46 Gungormus M. ; Fong H. ; Kim I.W. ; Evans J. S. ; Tamerler C. ; Sarikaya M Biomacromolecules 2008, 9 (3), 966.
[1] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[2] ZHOU Xin-Wen, DU Juan-Juan, SUN Shi-Gang. Anomalous IR Optical Properties of Monodispersed PtNi Nanoparticles[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1681-1687.
[3] YANG Fan, ZHANG Jing, WU Wei-Cheng. Hydrogenation Study of Benzene over a Mo2C/γ-Al2O3 Catalyst by In situ IR Spectroscopy[J]. Acta Physico-Chimica Sinca, 2014, 30(5): 943-949.
[4] ZHOU Xin-Wen, GAN Ya-Li, SUN Shi-Gang. Studies of Oxidation Processes of Methanol on Hollow CoPt Nanospheres and In situ Electrochemical Fourier Transform Infrared Spectroscopy[J]. Acta Physico-Chimica Sinca, 2012, 28(09): 2071-2076.
[5] WANG Zheng-Ke, HU Qiao-Ling. Chitosan Rods Reinforced by N-Carboxyl Propionyl Chitosan Sodium[J]. Acta Physico-Chimica Sinca, 2010, 26(07): 2053-2056.
[6] AN Xiao-Sha, CHEN De-Jun, ZHOU Zhi-You, WANG Qiang, FAN You-Jun, SUN Shi-Gang. Rare Earth Eu Doped PtRu/C Catalysts and Their Properties for Methanol Electrooxidation[J]. Acta Physico-Chimica Sinca, 2010, 26(05): 1207-1213.
[7] DENG Yi-Bin, HU Bing-Wen, ZHOU Ping. Solid-State NMR Studies of Structures and Molecular Motions for the Spidroin-Like Polymers[J]. Acta Physico-Chimica Sinca, 2009, 25(07): 1427-1433.
[8] ZHANG Qiang, QIAO Xiao-Jing, ZHANG Jian-Guo, ZUO Xiao-Li. Flash Pyrolysis of Trinitrophloroglucinol Metallic (Li, Na, K, Mg) Compounds[J]. Acta Physico-Chimica Sinca, 2009, 25(06): 1081-1087.
[9] CAI Kai-Cong, WANG Jian-Ping. Molecular Dynamical Structures of Glycolaldehyde[J]. Acta Physico-Chimica Sinca, 2009, 25(04): 677-683.
[10] PAN Lei-Ming, ZHOU Zhi-You, CHEN De-Hun, SUN Shi-Gang. Electrochemical and In Situ FTIR Studies of Adsorption and Oxidation of Dimethyl Ether on Platinum Electrode[J]. Acta Physico-Chimica Sinca, 2008, 24(10): 1739-1744.
[11] LI Li-Ying; WANG Jin-Gui; SUN Ping-Chuan; LIU Xiao-Hang; DING Da-Tong; CHEN Tie-Hong. Microporous Silica Hollow Nanospheres Templated by Anionic Polypeptide[J]. Acta Physico-Chimica Sinca, 2008, 24(03): 359-363.
[12] DENG Sui-Ping; OUYANG Jian-Ming. Defective Domains in LB Filmand Its Induction Growth of Ring-shaped CalciumOxalate Patterns[J]. Acta Physico-Chimica Sinca, 2007, 23(05): 713-716.
[13] CHEN Ren-Jie; WU Feng; LI Li; QIU Xin-Ping; CHEN Shi. Binary Molten Salt Electrolytes Based on LiClO4 and 2-oxazolidinone[J]. Acta Physico-Chimica Sinca, 2007, 23(04): 554-558.
[14] SIVAGURUNATHAN P.;RAMACHANDRAN K.;DHARMALINGAM K.. FTIR Spectroscopic Studies on Molecular Interaction between Alcohols and N,N-dimethylacetamide[J]. Acta Physico-Chimica Sinca, 2007, 23(03): 295-298.
[15] LIN Cui-Ying;ZHAO Jian-Xi. Effect of NaBr on the Ability of C12-s-C12•2Br Reverse Micelles for Solubilizing Water in Chloroform[J]. Acta Physico-Chimica Sinca, 2006, 22(12): 1501-1505.