Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (3): 728-736    DOI: 10.3866/PKU.WHXB201511303
ARTICLE     
Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light
Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG*()
Download: HTML     PDF(2845KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A novel Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst was prepared by hydrothermal posttreatment using dicyandiamide, zinc acetate, ammonium molybdate, cadmium acetate, and sodium sulfide as raw materials. X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), inductively coupled plasma atomic emission (ICP-AES), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The results indicate that heterojunctions are formed across the g-C3N4/Zn-Mo-CdS interface, which promotes interfacial charge transfer and inhibits the recombination of electrons and holes. The activities of as-prepared catalysts were tested through the photocatalytic degradation of Rhodamine B (RhB) under visible light. The results show that the Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst clearly displayed increased activity compared with single g-C3N4 and Zn-Mo-CdS. At an optimal g-C3N4 mass fraction of 20%, the as-prepared heterojunction photocatalyst displayed the highest rate constant under visible light, which was 30 and 10 times of single g-C3N4 and Zn-Mo-CdS, respectively. Not only Zn-Mo-CdS, but also Mo-Ni-CdS and Ni-Sn-CdS can form heterojunctions with g-C3N4 to promote the rate of separation of electrons and holes and improve photocatalytic activity.



Key wordsCarbon nitride      Ternary metal sulfide      Heterojunction      Photocatalysis      Organic matter degradation     
Received: 15 September 2015      Published: 30 November 2015
MSC2000:  O641  
  O649  
Fund:  the Natural Science Foundation of Liaoning Province, China(2015020590);Pilot Program of University of Liaoning Innovation and Education Reform, China
Corresponding Authors: Jian ZHANG     E-mail: zhangjianlshu@163.com
Cite this article:

Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light. Acta Physico-Chimica Sinca, 2016, 32(3): 728-736.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201511303     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I3/728

Fig 1 XRD patterns of CN, CdS, Zn-Mo-CdS, and ZMCS-CN(w%)
Fig 2 SEM images of CN (a), Zn-Mo-CdS (b), and ZMCS-CN(20%) (c)
Fig 3 UV-Vis spectra of CN, CdS, Zn-Mo-CdS, and ZMCS-CN(w%)color on web version
Fig 4 Schematic diagram of electrons-holes migration over as-prepared Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst
Fig 5 XPS spectra of as-prepared catalysts in the region of C 1s (a), N 1s (b), S 2p (c), Zn 2p (d), Mo 3d (e), and Cd 3d (f)
Fig 6 EIS spectra of as-prepared catalysts
Fig 7 Photocurrent responses of g-C3N4 based catalysts
Fig 8 Photocatalytic performances of RhB degradation for as-prepared catalysts under visible light irradiations and their first-order kinetics
Fig 9 Photocatalytic performances of Mo-Ni-CdS-CN(20%) and Ni-Sn-CdS-CN(20%) under visible light
1 Kondo K. ; Murakami N. ; Ye C. ; Tsubota T. ; Ohno T. Appl. Catal. B: Environ. 2013, 142.
2 Chen X. B. ; Shen S. H. ; Guo L. J. Chem. Rev. 2010, 110, 6503.
3 Zhang G. G. ; Zhang M.W. ; Ye X. X. ; Qiu X. Q. ; Lin S. ; Wang X. C. Adv. Mater. 2014, 26, 805.
4 Xu J. ; Wu H. T. ; Wang X. ; Xue B. ; Li Y. X. ; Cao Y. Phys. Chem. Chem. Phys. 2013, 15, 4510.
5 Ge L. Mater. Lett. 2011, 65, 2652.
6 Niu P. ; Zhang L. ; Liu G. ; Cheng H. Adv. Funct. Mater. 2012, 22, 4763.
7 Zhang Q. ; Wang H. Y. ; Hu S. Z. ; Lu G. ; Bai J. ; Kang X.X. ; Liu D. ; Gui J. Z. RSC Adv. 2015, 5, 42736.
8 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. Chem. Commun. 2015, 51, 858.
9 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. ; Mohamed A.R. Nano Energy 2015, 13, 757.
10 Tian N. ; Huang H.W. ; He Y. ; Guo Y. X. ; Zhang Y. H. RSC Adv. 2014, 4, 42716.
11 He Y. M. ; Zhang L. H. ; Wang X. X. ; Wu Y. ; Lin H. J. ; Zhao L. H. ; Weng W. Z. ; Wan H. L. ; Fan M. H. RSC Adv. 2014, 4, 13610.
12 Wang Y. J. ; Bai X. J. ; Pan C. S. ; He J. ; Zhu Y. F. J. Mater. Chem. 2012, 22, 11568.
13 Hu J. S. ; Ren L. L. ; Guo Y. G. ; Liang H. P. ; Cao A. M. ; Wan L. J. ; Bai C. L. Angew. Chem. Int. Edit. 2012, 44, 1269.
14 Yan H. J. ; Yang J. H. ; Ma G. J. ; Wu G. P. ; Zong X. ; Lei Z.B. ; Shi J. Y. ; Li C. J. Catal. 2009, 266, 165.
15 Huo Y. N. ; Yang X. L. ; Zhu J. ; Li H. X. Appl. Catal. B: Environ. 2011, 106, 69.
16 Fan Y. H. ; Luo Q. ; Liu G. X. ; Wang J. X. ; Dong X. T. ; Yu W. S. ; Sun D. Chin. J. Inorg. Chem. 2014, 30, 627.
16 范英华; 雒琴; 刘桂霞; 王进贤; 董相廷; 于文生; 孙德.. 无机化学学报, 2014, 30, 627.
17 Nie Q. L. ; Yuan Q. L. ; Wang Q. S. ; Xu Z. D. J. Mater. Sci. 2004, 39, 5611.
18 Xia S. ; Lei W. ; Yang Y. L. Nanoscale Res. Lett. 2011, 6, 562.
19 Xu Y. ; Schoonen M. A. A. Am. Mineral. 2000, 85, 543.
20 Ge L. ; Han C. ; Xiao X. Int. J. Hydrog. Energy 2013, 38, 6960.
21 Sun M. ; Yan T. ; Y an ; Q; Liu H. Y. ; Yan L. G. ; Zhang Y. F. ; Du B. RSC Adv. 2014, 4, 19980.
22 Sun M. ; Yan Q. ; Yan T. ; Li M. M. ; Wei D. ; Wang Z. P. ; Wei Q. ; Du B. RSC Adv. 2014, 4, 31019.
23 Xiang Q. ; Yu J. ; Jaroniec M. J. Am. Chem. Soc. 2012, 134, 6575.
24 Zong X. ; Yan H. J. ; Wu G. P. ; Ma G. J. ; Wen F. Y. ; Wang L. ; Li C. J. Am. Chem. Soc. 2008, 130, 7176.
25
26 Chen F. J. ; Cao Y. L. ; Jia D. Z. ; Liu A. J. Dyes Pigments 2015, 120, 8.
27 Chen F. J. ; Cao Y. L. ; Jia D. Z. Ceram. Int. 2015, 41, 6645.
28 Hu S. Z. ; Li F. Y. ; Fan Z. P. ; Wang F. ; Zhao Y. F. ; Lv Z. B. Dalton Trans. 2015, 44, 1084.
29 Wang D. S. ; Duan Y. D. ; Luo Q. Z. ; Li X. Y. ; Bao L. L. Desalination 2011, 270, 174.
30 Lu M. L. ; Pei Z. X. ; Weng S. X. ; Feng W. H. ; Fang Z. B. ; Zheng Z. Y. ; Huang M. L. ; Liu P. Phys. Chem. Chem. Phys. 2014, 16, 21280.
31 Liu L. Y. ; Yang L. ; Pu Y. T. ; Xiao D. Q. ; Zhu J. G. Mater. Lett. 2012, 66, 121.
32 Ge L. ; Han C. C. ; Liu J. Appl. Catal. B: Environ
33 Liu H. ; Jin Z. T. ; Xu Z. Z. Dalton Trans. 2015, 44, 14368.
34 Dong F. ; Zhao Z.W. ; Xiong T. ; Ni Z. L. ; Zhang W. D. ; Sun Y. J. ; Ho W. K. ACS Appl. Mater. Interf. 2013, 5, 11392.
35 Cao J. ; Luo B. D. ; Lin. H. L.; Xu B. Y. ; Chen S. F.J. Hazard. Mater. 2012, 217- 218,107.
36 Wang Y. ; Wang X. C. ; Antonietti M. Angew. Chem. Int. Edit. 2012, 51, 68.
37 Ge L. ; Han C. Appl. Catal. B: Environ. 2012, 117- 118, 268..
38 Ma D. K. ; Zhou H. Y. ; Zhang J. H. ; Qian Y. T. Mater. Chem. Phys. 2008, 111, 391.
39 Zhu Y. P. ; Li J. ; Ma T. Y. ; Liu Y. P. ; Du G. H. ; Yuan Z. Y.J. Mater. Chem. A 2014, 2, 1093.
40 Zhang K. ; Kim W. J. ; Ma M. ; Shi X. J. ; Park J. H. J. Mater. Chem. A 2015, 3, 4803.
41 Li Y. G. ; Wei X. L. ; Li H. J. ; Wang R. R. ; Feng J. ; Yun H. ; Zhou A. N. RSC Adv. 2015, 5, 14074.
42 Xu Y. ; Xu H. ; Wang L. ; Yan J. ; Li H. ; Song Y. ; Huang L. ; Cai G. Dalton Trans. 2013, 42, 7604.
43 He B. L. ; Dong B. ; Li H. L. Electrochem. Commun. 2007, 9, 425.
44 Zhang J. ; Wang Y. J. ; Hu S. Z. Acta Phys. -Chim. Sin. 2015, 31, 159.
44 张健; 王彥娟; 胡绍争. 物理化学学报, 2015, 31, 159.
[1] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[2] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[4] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 611-619.
[5] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[6] . Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2532-2541.
[7] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[8] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.
[9] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[10] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[11] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2069-2076.
[12] Dong-Mei LIANG,Xia LENG,Yu-Chen MA. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1967-1976.
[13] Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU,Yong-Xin LI. Advances in the Synthesis of Mesoporous Carbon Nitride Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1913-1928.
[14] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.
[15] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.