Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 28-47    DOI: 10.3866/PKU.WHXB201512081
REVIEW     
Fundamental Processes in Surface Photocatalysis on TiO2
Qing GUO1,Chuan-Yao ZHOU1,Zhi-Bo MA1,Ze-Feng REN2,Hong-Jun FAN1,Xue-Ming YANG1,*()
1 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P.R.China
2 International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, P.R.China
Download: HTML     PDF(21688KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Because of the potential applications of TiO2 in photocatalytic hydrogen production and pollutant degradation, over the past few decades we have witnessed increasing interest in and effort toward developing TiO2-based photocatalysts, and improving the efficiency and exploring the reaction mechanisms at the atomic and molecular levels. Because surface science studies on single crystal surfaces under ultrahigh vacuum (UHV) conditions can provide fundamental insights into these important processes, both the thermo-and photo-chemistry on TiO2, especially on rutile TiO2(110) surfaces, have been extensively investigated with a variety of experimental and theoretical approaches. In this review, commencing with the properties of TiO2, we then focus on charge transport and trapping, and electron transfer dynamics. Next, we summarize recent progress made in the study of elementary photocatalytic chemistry of methanol on mainly rutile TiO2(110), as well as in some studies on rutile TiO2(011) and anataseTiO2(101). These studies have provided fundamental insights into surface photocatalysis and stimulated new investigations in this exciting area. The implications of these studies for the development of new photocatalysis models are also discussed.



Key wordsTitanium dioxide      Photocatalysis      Electron-hole separation      Nonadiabatic process      Ground-state potential energy surface     
Received: 06 November 2015      Published: 08 December 2015
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21203189, 21321091, 21173212, 21403224, 21573225, 21322310);National Key Basic Research Program of China (973)(2013CB834605);Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T05);the State Key Laboratory of Molecular Reaction Dynamics, China(ZZ-2014-02)
Corresponding Authors: Xue-Ming YANG     E-mail: xmyang@dicp.ac.cn
Cite this article:

Qing GUO,Chuan-Yao ZHOU,Zhi-Bo MA,Ze-Feng REN,Hong-Jun FAN,Xue-Ming YANG. Fundamental Processes in Surface Photocatalysis on TiO2. Acta Phys. -Chim. Sin., 2016, 32(1): 28-47.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512081     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/28

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Schneider J. ; Matsuoka M. ; Takeuchi M. ; Zhang J. ; Horiuchi Y. ; Anpo M. ; Bahnemann D. W. Chem. Rev. 2014, 114, 9919.
2 Fujishima A. ; Zhang X. ; Tryk D. A. Surf. Sci. Rep. 2008, 63, 515.
3 Fujishima A. ; Honda K. Nature 1972, 238, 37.
4 Nakata K. ; Fujishima A. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13, 169.
5 Ma Y. ; Wang X. ; Jia Y. ; Chen X. ; Han H. ; Li C. Chem. Rev. 2014, 114, 9987.
6 Dambournet D. ; Belharouak I. ; Amine K. Chem. Mater. 2010, 22, 1173.
7 Nosheen S. ; Galasso F. S. ; Suib S. L. Langmuir 2009, 25, 7623.
8 Diebold U. Surf. Sci. Rep. 2003, 48, 53.
9 Zhang J. ; Li M. J. ; Feng Z. C. ; Chen J. ; Li C. J. Phys. Chem. B 2006, 110, 927.
10 Su W. G. ; Zhang J. ; Feng Z. C. ; Chen T. ; Ying P. L. ; Li C. J. Phys. Chem. C 2008, 112, 7710.
11 Shi J. Y. ; Chen J. ; Feng Z. C. ; Chen T. ; Lian Y. X. ; Wang X. L. ; Li C. J. Phys. Chem. C 2007, 111, 693.
12 Zhang J. ; Xu Q. ; Li M. J. ; Feng Z. C. ; Li C. J. Phys. Chem. C 2009, 113, 1698.
13 Xu Q. A. ; Zhang J. ; Feng Z. C. ; Ma Y. ; Wang X. ; Li C. Chem. -Asian J. 2010, 5, 2158.
14 Zhang H. Z. ; Banfield J. F. J. Phys. Chem. B 2000, 104, 3481.
15 Yang H. G. ; Sun C. H. ; Qiao S. Z. ; Zou J. ; Liu G. ; Smith S. C. ; Cheng H. M. ; Lu G. Q. Nature. 2008, 453, 638.
16 He Y. ; Dulub O. ; Cheng H. ; Selloni A. ; Diebold U. Phys. Rev. Lett. 2009, 102, 106105.
17 Liang Y. ; Gan S. ; Chambers S. A. ; Eltman E. I. Phys. Rev. B 2001, 63, 235402.
18 Tachibana Y. ; Vayssieres L. ; Durrant J. R. Nat. Photonics. 2012, 6, 511.
19 Kapilashrami M. ; Zhang Y. ; Liu Y. S. ; Hagfeldt A. ; Guo J. Chem. Rev. 2014, 114, 9662.
20 Asahi R. ; Taga Y. ; Mannstadt W. ; Freeman A. J. Phys. Rev. B 2000, 61, 7459.
21 van de Krol R. ; Grätzel M. Photoelectrochemical Hydrogen Production; Springer: Heidelberg 2012, p16
22 Henderson M. A. Surf. Sci. Rep. 2011, 66, 185.
23 Hoffmann M. R. ; Martin S. T. ; Choi W. ; Bahnemann D. W. Chem. Rev. 1995, 95, 69.
24 Berger T. ; Sterrer M. ; Diwald O. ; Knozinger E. ChemPhysChem 2005, 6, 2104.
25 Gundlach L. ; Felber S. ; Storck W. ; Galoppini E. ; Wei Q. ; Willig F. Res. Chem. Intermed. 2005, 31, 39.
26 Gundlach L. ; Ernstorfer R. ; Willig F. Phys. Rev. B 2006, 74, 035324.
27 Nilius N. ; Ernst N. ; Freund H. J. Chem. Phys. Lett. 2001, 349, 351.
28 Yamada Y. ; Kanemitsu Y. Phys. Rev. B 2010, 82, 113103.
29 Yamada Y. ; Kanemitsu Y. Phys. Status. Solidi. C 2011, 8, 104.
30 Sporleder D. ; Wilson D. P. ; White M. G. J. Phys. Chem. C 2009, 113, 13180.
31 Diwald O. ; Thompson T. L. ; Goralski E. G. ; Walck S. D. ; Yates J. T. ; Jr. J. Phys. Chem. B 2004, 108, 52.
32 Turner G. M. ; Beard M. C. ; Schmuttenmaer C. A. J. Phys. Chem. B 2002, 106, 11716.
33 Grela M. A. ; Brusa M. A. ; Colussi A. J. J. Phys. Chem. B 1997, 101, 10986.
34 Grela M. A. ; Colussi A. J. J. Phys. Chem. B 1999, 103, 2614.
35 Grela M. A. ; Brusa M. A. ; Colussi A. J. J. Phys. Chem. B 1999, 103, 6400.
36 Morishita T. ; Hibara A. ; Sawada T. ; Tsuyumoto I. J. Phys. Chem. B 1999, 103, 5984.
37 Bahnemann D. W. ; Hilgendorff M. ; Memming R. J. Phys. Chem. B 1997, 101, 4265.
38 Yoshihara T. ; Katoh R. ; Furube A. ; Tamaki Y. ; Murai M. ; Hara K. ; Murata S. ; Arakawa H. ; Tachiya M. J. Phys. Chem. B 2004, 108, 3817.
39 Tamaki Y. ; Furube A. ; Murai M. ; Hara K. ; Katoh R. ; Tachiya M. J. Am. Chem. Soc. 2006, 128, 416.
40 Tamaki Y. ; Furube A. ; Murai M. ; Hara K. ; Katoh R. ; Tachiya M. Phys. Chem. Chem. Phys. 2007, 9, 1453.
41 Nakaoka Y. ; Nosaka Y. J. Photochem. Photobiol. A 1997, 110, 299.
42 Jenkins C. A. ; Murphy D. M. J. Phys. Chem. B 1999, 103, 101.
43 Ganduglia-Pirovano M. V. ; Hofmann A. ; Sauer J. Surf. Sci. Rep. 2007, 62, 219.
44 Kowalski P. M. ; Camellone M. F. ; Nair N. N. ; Meyer B. ; Marx D. Phys. Rev. Lett. 2010, 105, 146405.
45 Qu Z. W. ; Kroes G. J. J. Phys. Chem. B 2006, 110, 8998.
46 Miyagi T. ; Kamei M. ; Mitsuhashi T. ; Ishigaki T. ; Yamazaki A. Chem. Phys. Lett. 2004, 390, 399.
47 Kamei M. ; Miyagi T. ; Ishigaki T. Chem. Phys. Lett. 2005, 407, 209.
48 Planelles J. ; Movilla J. L. Phys. Rev. B 2006, 73, 235350.
49 Deskins N. A. ; Dupuis M. Phys. Rev. B 2007, 75, 195212.
50 Agrell H. G. ; Boschloo G. ; Hagfeldt A. J. Phys. Chem. B 2004, 108, 12388.
51 Mora-Sero I. ; Bisquert J. Nano Lett. 2003, 3, 945.
52 Barzykin A. V. ; Tachiya M. J. Phys. Chem. B 2002, 106, 4356.
53 Shkrob I. A. ; Sauer M. C. J. Phys. Chem. B 2004, 108, 12497.
54 Beermann N. ; Boschloo G. ; Hagfeldt A. J. Photochem. Photobiol. A 2002, 152, 213.
55 van de Lagemaat J. ; Frank A. J. J. Phys. Chem. B 2001, 105, 11194.
56 Komaguchi K. ; Nakano H. ; Araki A. ; Harima Y. Chem. Phys. Lett. 2006, 428, 338.
57 Peiro A. M. ; Colombo C. ; Doyle G. ; Nelson J. ; Mills A. ; Durrant J. R. J. Phys. Chem. B 2006, 110, 23255.
58 Takahashi H. ; Watanabe R. ; Miyauchi Y. ; Mizutani G. J. Chem. Phys. 2011, 134, 154704.
59 Kerisit S. ; Deskins N. A. ; Rosso K. M. ; Dupuis M. J. Phys. Chem. C 2008, 112, 7678.
60 Shapovalov V. ; Stefanovich E. V. ; Truong T. N. Surf. Sci. 2002, 498, L103.
61 Yang X. J. ; Tamai N. Phys. Chem. Chem. Phys. 2001, 3, 3393.
62 Tamaki Y. ; Furube A. ; Katoh R. ; Murai M. ; Hara K. ; Arakawa H. ; Tachiya M. C. R. Chim. 2006, 9, 268.
63 Thompson T. L. ; Yates J. T. Jr. J. Phys. Chem. B 2005, 109, 18230.
64 Berger T. ; Sterrer M. ; Diwald O. ; Knozinger E. ; Panayotov D. ; Thompson T. L. ; Yates J. T. Jr. J. Phys. Chem. B 2005, 109, 6061.
65 Tang H. ; Levy F. ; Berger H. ; Schmid P. E. Phys. Rev. B 1995, 52, 7771.
66 Stevanovic A. ; Buettner M. ; Zhang Z. ; Yates J. T. Jr. J. Am. Chem. Soc. 2012, 134, 324.
67 Murakami M. ; Matsumoto Y. ; Nakajima K. ; Makino T. ; Segawa Y. ; Chikyow T. ; Ahmet P. ; Kawasaki M. ; Koinuma H. Appl. Phys. Lett. 2001, 78, 2664.
68 Shi J. ; Chen J. ; Feng Z. ; Chen T. ; Lian Y. ; Wang X. ; Li C. J. Phys. Chem. C 2007, 111, 693.
69 Knorr F. J. ; Mercado C. C. ; McHale J. L. J. Phys. Chem. C 2008, 112, 12786.
70 Yamada Y. ; Kanemitsu Y. Appl. Phys. Lett. 2012, 101, 133907.
71 Dozzi M. V. ; D′Andrea C. ; Ohtani B. ; Valentini G. ; Selli E. J. Phys. Chem. C 2013, 117, 25586.
72 Leytner S. ; Hupp J. T. Chem. Phys. Lett. 2000, 330, 231.
73 Murakami M. ; Matsumoto Y. ; Nakajima K. ; Makino T. ; Segawa Y. ; Chikyow T. ; Ahmet P. ; Kawasaki M. ; Koinuma H. Appl. Phys. Lett. 2001, 78, 2664.
74 Kim S. H. ; Stair P. C. ; Weitz E. J. Chem. Phys. 1998, 108, 5080.
75 Kim S. H. ; Stair P. C. ; Weitz E. Chem. Phys. Lett. 1999, 302, 511.
76 Antoniewicz P. R. Phys. Rev. B 1980, 21, 3811.
77 Asahi T. ; Furube A. ; Masuhara H. Chem. Phys. Lett. 1997, 275, 234.
78 Martino D. M. ; van Willigen H. ; Spitler M. T. J. Phys. Chem. B 1997, 101, 8914.
79 Colombo D. P. ; Bowman R. M. J. Phys. Chem. 1996, 100, 18445.
80 Furube A. ; Asahi T. ; Masuhara H. ; Yamashita H. ; Anpo M. Res. Chem. Intermediat. 2001, 27, 177.
81 Rabani J. ; Yamashita K. ; Ushida K. ; Stark J. ; Kira A. J. Phys. Chem. B 1998, 102, 1689.
82 Shkrob I. A. ; Sauer M. C. ; Gosztola D. J. Phys. Chem. B 2004, 108, 12512.
83 Wang Y. H. ; Hang K. ; Anderson N. A. ; Lian T. Q. J. Phys. Chem. B 2003, 107, 9434.
84 He J. J. ; Lindstrom H. ; Hagfeldt A. ; Lindquist S. E. J. Phys. Chem. B 1999, 103, 8940.
85 Borgstrom M. ; Blart E. ; Boschloo G. ; Mukhtar E. ; Hagfeldt A. ; Hammarstrom L. ; Odobel F. J. Phys. Chem. B 2005, 109, 22928.
86 Henderson M. A. ; Otero-Tapia S. ; Castro M. E. Faraday Discuss. 1999, 114, 313.
87 Henderson M. A. ; Otero-Tapia S. ; Castro M. E. Surf. Sci. 1998, 412/413, 252.
88 Shen M. M. ; Henderson M. A. J. Phys. Chem. C 2012, 116, 18788.
89 Onda K. ; Li B. ; Zhao J. ; Petek H. Surf. Sci. 2005, 593, 32.
90 Li B. ; Zhao J. ; Onda K. ; Jordan K. D. ; Yang J. L. ; Petek H. Science 2006, 311, 1436.
91 Onda K. ; Li B. ; Zhao J. ; Jordan K. D. ; Yang J. ; Petek H. Science 2005, 308, 1154.
92 Zhang Z. R. ; Bondarchuk O. ; White J. M. J. Am. Chem. Soc. 2006, 128, 4198.
93 Bates S. P. ; Gillan M. J. ; Kresse G. J. Phys. Chem. B 1998, 102, 2017.
94 de Armas R. S. ; Oviedo J. ; San Miguel M. A. ; Sanz J. F. J. Phys. Chem. C 2007, 111, 10023.
95 Zhao J. ; Yang J. L. ; Petek H. Phys. Rev. B 2009, 80, 235416.
96 Zhou C. ; Ren Z. F. ; Tan S. J. ; Ma Z. B. ; Mao X. C. ; Dai D. X. ; Fan H. J. ; Yang X. M. ; LaRue J. ; Cooper R. ; Wodtke A. M. ; Wang Z. ; Li Z. Y. ; Wang B. ; Yang J. L. ; Hou J. G. Chem. Sci. 2010, 1, 575.
97 Kawai T. ; Sakata T. J. Chem. Soc. Chem. Commun 1980, 694
98 Palmisano G. ; Augugliaro V. ; Pagliaro M. ; Palmisano L. Chem. Commun 2007, 3425
99 Muggli D. S. ; Odland M. J. ; Schmidt L. R. J. Catal. 2001, 203, 51.
100 Chen X. ; Chen S. ; Guo L. ; Mao S. S. Chem. Rev. 2010, 110, 6503.
101 Li Z. ; Smith R. S. ; Kay B. D. ; Dohnálek Z. J. Phys. Chem. C 2011, 115, 22534.
102 Shen M. M. ; Acharya D. P. ; Dohnálek Z. ; Henderson M. A. J. Phys. Chem. C 2012, 116, 25465.
103 Zhou C. ; Ma Z. ; Ren Z. ; Wodtke A. M. ; Yang X. Energy Environ. Sci.. 2012, 5, 6833.
104 Cui X. F. ; Wang Z. ; Tan S. J. ; Wang B. ; Yang J. L. ; Hou J. G. J. Phys. Chem. C 2009, 113, 13204.
105 Klymko P. W. ; Kopelman R. J. Phys. Chem-Us. 1983, 87, 4565.
106 Kopelman R. Science 1988, 241, 1620.
107 Zhou C. ; Ma Z. ; Ren Z. ; Mao X. ; Dai D. ; Yang X. Chem. Sci. 2011, 2, 1980.
108 Haubrich J. ; Kaxiras E. ; Friend C. M. Chem. Eur. J. 2011, 17, 4496.
109 Zuo F. ; Wang L. ; Wu T. ; Zhang Z. Y. ; Borchardt D. ; Feng P. Y. J. Am. Chem. Soc. 2010, 132, 11856.
110 Shen M. M. ; Henderson M. A. J. Phys. Chem. Lett. 2011, 2, 2707.
111 Shen M. M. ; Henderson M. A. J. Phys. Chem. C 2011, 115, 5886.
112 Guo Q. ; Xu C. ; Ren Z. ; Yang W. ; Ma Z. ; Dai D. ; Fan H. ; Minton T. K. ; Yang X. J. Am. Chem. Soc. 2012, 134, 13366.
113 Lane C. D. ; Petrik N. G. ; Orlando T. M. ; Kimmel G. A. J. Phys. Chem. C 2007, 111, 16319.
114 Petrik N. G. ; Kimmel G. A. J. Phys. Chem. C 2009, 113, 4451.
115 Lang X. ; Wen B. ; Zhou C. ; Ren Z. ; Liu L. M. J. Phys. Chem. C 2014, 118, 19859.
116 Mao X. ; Wei D. ; Wang Z. ; Jin X. ; Hao Q. ; Ren Z. ; Dai D. ; Ma Z. ; Zhou C. ; Yang X. J. Phys. Chem. C 2015, 119, 1170.
117 Mao X. ; Lang X. ; Wang Z. ; .; Hao Q. ; Wen B. ; Ren Z. ; Dai D. ; Zhou C. ; Liu L. ; Yang X. J. Phys. Chem. Lett. 2013, 4, 3839.
118 Guo Q. ; Xu C. ; Yang W. ; Ren Z. ; Ma Z. ; Dai D. ; Minton T. K. ; Yang X. J. Phys. Chem. C 2013, 117, 5293.
119 Phillips K. R. ; Jensen S. C. ; Baron M. ; Li S. C. ; Friend C. M. J. Am. Chem. Soc. 2013, 135, 574.
120 Yuan Q. ; Wu Z. ; Jin Y. ; Xu L. ; Xiong F. ; Ma Y. ; Huang W. J. Am. Chem. Soc. 2013, 135, 5212.
121 Domokos L. ; Katona T. ; Molnar A. Catal. Lett. 1996, 40, 215.
122 Liu J. L. ; Zhan E. S. ; Cai W. J. ; Li J. ; Shen W. J. Catal. Lett. 2008, 120, 274.
123 Minyukova T. P. ; Simentsova I. I. ; Khasin A. V. ; Shtertser N. V. ; Baronskaya N. A. ; Khassin A. A. ; Yurieva T. M. Appl. Catal. A-Gen. 2002, 237, 171.
124 Mao X. ; Wang Z. ; Lang X. ; Hao Q. ; Wen B. ; Dai D. ; Zhou C. ; Liu L. M. ; Yang X. J. Phys. Chem. C 2015, 119, 6121.
125 Ohno T. ; Sarukawa K. ; Matsumura M. New J. Chem. 2002, 26, 1167.
126 Takahashi H. ; Watanabe R. ; Miyauchi Y. ; Mizutani G. J. Chem. Phys. 2011, 134, 154704.
127 Tao J. G. ; Batzill M. J. Phys. Chem. Lett. 2010, 1, 3200.
128 Xu C. ; Yang W. ; Guo Q. ; Dai D. ; Chen M. ; Yang X. J. Am. Chem. Soc. 2013, 135, 10206.
129 Xu C. ; Yang W. ; Ren Z. ; Dai D. ; Guo Q. ; Minton T. K. ; Yang X. J. Am. Chem. Soc. 2013, 135, 19039.
130 Kavan L. ; Grätzel M. ; Gilbert S. E. ; Klemenz C. ; Scheel H. J. J. Am. Chem. Soc. 1996, 118, 6716.
131 Herman G. S. ; Dohnalek Z. ; Ruzycki N. ; Diebold U. J. Phys. Chem. B 2003, 107, 2788.
132 Xu C. ; Yang W. ; Guo Q. ; Dai D. ; Chen M. ; Yang X. J. Am. Chem. Soc. 2014, 136, 602.
133 Tilocca A. ; Selloni A. J. Phys. Chem. B 2004, 108, 19314.
134 Guo Q. ; Minton T. K. ; Yang X. Chin. J. Catal. 2015, 36, 1649.
134 郭庆; Minton T. K.; 杨学明. 催化学报, 2015, 36, 1649.
[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[7] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[8] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[9] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[10] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[11] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[12] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[13] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[14] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.
[15] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.