Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 321-328    DOI: 10.3866/PKU.WHXB201512091
ARTICLE     
Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene
Jun WANG,Li LI*(),Zi-Dong WEI*()
Download: HTML     PDF(14687KB) Export: BibTeX | EndNote (RIS)      

Abstract  

N-doped graphene has aroused much interest owing to its high activity and stability in oxygen reduction reaction (ORR) catalysis. However, the contribution of different types of N-doped graphene to ORR activity remains in dispute. Based on this issue, this paper conducts a comparative study of the ORR on graphitic N-doped graphene (GNG) and pyridinic N-doped grapheme (PNG). Band structure calculations show that the conductivity of GNG decreases as the nitrogen content increases; while that of PNG first increases to the highest at nitrogen content of 4.2% (atomic fraction), and then decreases. The conductivity of PNG is always higher than GNG when the doped nitrogen content is greater than 1.4%. Additionally, the free energy diagram of ORR shows that protonation of O2 is the potential-determining step among the whole ORR process, and the free energy change of this step on GNG is lower than on PNG, suggesting that GNG has higher ORR activity than PNG if their electron transport ability are the same. When the N content is lower than 2.8%, the conductivity difference between GNG and PNG is almost negligible, thus GNG with a higher capacity of O2 protonation exhibits better ORR activity than PNG. When the N content is greater than 2.8%, in this case, conductivity rather than free energy change will dominate, therefore the ORR on PNG will occur faster than on GNG because of its higher conductivity.



Key wordsOxygen reduction reaction      Nitrogen doped graphene      Pyridinic nitrogen      Graphitic nitrogen      Density functional theory     
Received: 20 October 2015      Published: 09 December 2015
MSC2000:  O646  
  O641  
Fund:  the National Natural Science Foundation of China(21176271, 21376284)
Corresponding Authors: Li LI,Zi-Dong WEI     E-mail: liliracial@cqu.edu.cn;zdwei@cqu.edu.cn
Cite this article:

Jun WANG,Li LI,Zi-Dong WEI. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene. Acta Phys. -Chim. Sin., 2016, 32(1): 321-328.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512091     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/321

Fig 1 Structures of GNG (a–d) and PNG (e–h) with different N doped contents
Fig 2 Band structure of the intrinsic graphene (a), and the GNG (b–e) and PNG (f–i) with different N doped contents
Fig 3 Bandgap vs N doped content for GNG and PNG
Fig 4 Bader charge distribution of GNG (a) and PNG (b)
Fig 5 Stable configurations of four oxygen-containing species O2, OOH, O, and OH adsorbed on GNG (a–d) and PNG (e–h)
$\Delta {{{E}}\!_{{{\rm{O}}_2}}}$/eV EOOH/eV EO/eV EOH/eV
GNG –0.359 –1.725 –6.076 –3.455
PNG –0.234 –0.476 –4.718 –2.406
Table 1 Adsorption energy of different oxygen-containing species on GNG and PNG
Elementary step GNG   PNG
∆ZPE/eV –∆TS/eV Ewater/eV G/eV ∆ZPE/eV –∆TS/eV Ewater/eV G/eV
O2 + * → O2 ads 0.001 0.64 –0.32 –0.139   –0.006 0.64 –0.32 –0.021
O2 ads + H2O + e → OOHads + OH- 0.227 2.05 –0.22 0.921   0.219 2.05 –0.22 2.037
OOHads + e → Oads + OH- 0.053 –0.465 0.07 –1.715   0.074 –0.465 0.07 –1.585
Oads + H2O + e → OHads + OH- 0.094 0.205 –0.28 0.463   0.166 0.205 –0.28 0.226
OHads + e → OH + * 0.105 –0.465 0.75 0.470   0.027 –0.465 0.75 –0.657
Table 2 Free energy change and relative correction of elementary steps involved in ORR on GNG and PNG
Fig 6 Free energy curves of ORR on GNG and PNG
1 Wu G. ; Zelenay P. Accounts Chem. Res 2013, 46, 1878.
2 Zhang Z. H. ; Liu J. ; Gu J. J. ; Su L. ; Cheng L. F. Energy Environ. Sci 2014, 7, 2535.
3 Shao Y. Y. ; Sui J. H. ; Yin G. P. ; Gao Y. Z. Appl. Catal. B-Environ 2008, 79, 89.
4 Huo R. J. ; Jiang W. J. ; Xu S. L. ; Zhang F. Z. ; Hu J. S. Nanoscale 2014, 6, 203.
5 Ferreira P. J. ; la O′ G. J. ; Shao-Horn Y. ; Morgan D. ; Makharia R. ; Kocha S. ; Gasteiger H. A. J. Electrochem. Soc 2005, 152, A2256.
6 Li L. ; Wang H. X. ; Xu B. Q. ; Li J. L. ; Xing W. ; Mao Z. Q. Acta Phys. -Chim. Sin 2003, 19, 342.
6 李莉; 王恒秀; 徐伯庆; 李晋鲁; 邢魏; 毛宗强. 物理化学学报, 2003, 19, 342.
7 Lai L. F. ; Potts J. R. ; Zhan D. ; Wang L. ; Poh C. K. ; Tang C. ; Gong H. ; Shen Z. X. ; Lin J. Y. ; Ruoff R. S. Energy Environ. Sci 2012, 5, 7936.
8 Zhang C. Z. ; Mahmood N. ; Yin H. ; Liu F. ; Hou Y. L. Adv. Mater 2013, 25, 4932.
9 Zhang, L. P.; Niu, J. B.; Li, M. T.; Xia, Z. H. J. Phys. Chem. C 2014, 118, 3545. doi: 10.1021/jp410501u.
10 Zhu C. Z. ; Dong S. J. Nanoscale 2013, 5, 1753.
11 Liu Q. ; Zhang H. Y. ; Zhong H. W. ; Zhang S. M. ; Chen S. L. Electrochim. Acta 2012, 81, 313.
12 Ding W. ; Wei Z. D. ; Chen S. G. ; Qi X. Q. ; Yang T. ; Hu J. S. ; Wang D. ; Wan L. J. ; Alvi S. F. ; Li L. Angew. Chem 2013, 125, 1.
13 Soin N. ; Roy S. S. ; Roy S. ; Hazra K. S. ; Misra D. S. ; Lim T. H. ; Hetherington C. J. ; McLaughlin J. A. J. Phys. Chem. C 2011, 115, 5366.
14 Usachov D. ; Vilkov O. ; Grüneis A. ; Haberer D. ; Fedorov A. ; Adamchuk V. K. ; Preobrajenski A. B. ; Dudin P. ; Barinov A. ; Oehzelt M. ; Laubschat C. ; Vyalikh D. V. Nano Lett 2011, 11, 5401.
15 Lin Z. Y. ; Song M. K. ; Ding Y. ; Liu Y. ; Liu M. L. ; Wong C. P. Phys. Chem. Chem. Phys 2012, 14, 3381.
16 Ikeda T. ; Boero M. ; Huang S. F. ; Terakura K. ; Oshima M. ; Ozaki J. I. J. Phys. Chem. C 2008, 112, 14706.
17 Boukhvalov D. W. ; Son Y. W. Nanoscale 2012, 4, 417.
18 Matter P. H. ; Zhang L. ; Ozkan U. S. J. Catal 2006, 238, 83.
19 Zhang L. ; Niu J. ; Dai L. ; Xia Z. Langmuir 2012, 28, 7542.
20 Kresse G. Phys. Rev. B 1996, 54, 11169.
21 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett 1996, 77, 3865.
22 Yu L. ; Pan X. L. ; Cao P. ; Bao X. H. J. Catal 2011, 282, 183.
23 Saidi W. A. J. Phys. Chem. Lett 2013, 4, 4160.
24 Nørskov J. K. ; Rossmeisl J. ; Logadottir A. ; Lindqvist L. ; Kitchin J. R. ; Bligaard T. ; Jónsson H. J. Phys. Chem. B 2004, 108, 17886.
25 Wang Y. ; Cheng H. P. J. Phys. Chem. C 2013, 117, 2106.
26 Liang W. ; Chen J. X. ; Liu Y. W. ; Chen S. L. ACS Catal 2014, 4, 4170.
27 Sha Y. ; Yu T. H. ; Liu Y. ; Merinov B. V. ; Goddard W. A. J. Phys. Chem. Lett 2010, 1, 856.
28 Schiros T. ; Nordlund D. ; Pálová L. ; Prezzi D. ; Zhao L. Y. ; Kim K. S. ; Wurstbauer U. ; Gutiérrez C. ; Delongchamp D. ; Jaye C. ; Fischer D. ; Ogasawara H. ; Pettersson L. G. M. ; Reichman D. R. ; Kim P. ; Hybertsen M. S. ; Pasupathy A. N. Nano Lett 2012, 12, 4025.
29 Jafri S. H. M. ; Carva K. ; Widenkvist E. ; Blom T. ; Sanyal B. ; Fransson J. ; Eriksson O. ; Jansson U. ; Grennberg H. ; Karis O. ; Quinlan ; R. A. J. Phys. D: Appl. Phys 2010, 43, 1.
30 Liang J. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Edit 2012, 51, 11496.
31 Sun J. ; Fang Y. H. ; Liu Z. P. Phys. Chem. Chem. Phys 2014, 27, 13733.
32 Koper, M. T. M. J. Solid State Electrochem. 2012, 17, 339. doi: 10.1007/s10008-012-1918-x.
33 Jiao Y. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. J. Am. Chem. Soc 2014, 136, 4394.
34 Niwa H. ; Horiba K. ; Harada Y. ; Oshima M. ; Ikeda T. ; Terakura K. ; Ozaki J. I. ; Miyata S. J. Power Sources 2009, 187, 93.
35 Geng D. S. ; Chen Y. ; Chen Y. G. ; Li Y. L. ; Li R. Y. ; Sun X. L. ; Ye S. Y. ; Knights S. Energy Environ. Sci 2011, 4, 760.
36 Rao C. V. ; Cabrera C. R. ; Ishikawa Y. J. Phys. Chem. Lett 2010, 1, 2622.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[12] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[13] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[14] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[15] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.