Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 183-194    DOI: 10.3866/PKU.WHXB201512113
REVIEW     
STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface
Li WANG1,Hong SHI1,Hui-Hui LIU1,Xiang SHAO1,*(),Kai WU2,*()
1 STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface
2 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download: HTML     PDF(747KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Single crystalline oxide thin film has been delegated as an important approach to studying oxide materials. The related researches are at the frontier of model catalysis. In this review, we try to summarize what has been researched so far around the CaO(001) films, which have been recently developed in Prof. Hajo Freund′s group at the Fritz-Haber Institute. The revealed properties of CaO films have displayed the common characteristics of supported ultrathin oxide films, which are sensitively dependent on the interface structures and film thicknesses, but they have also shown new aspects such as the novel tuning effects from self-doping by substrate ions. Low-temperature scanning tunneling microscopy (LT-STM) has been applied through all detailed studies, including the characterizations of atomic structure and electronic properties, recognition of various defects and charge analyses of various surface species. The microscopic information received from delicate STM measurements provides atomic views of the effective factors involved in manipulating the oxide surface properties. With the aid of theoretical calculations, deep insights of the doping mechanism and selection principles of the dopants are achieved, which should largely assist the design of new catalysts.



Key wordsCaO      Thin film      Model catalyst      STM      Surface chemistry     
Received: 15 October 2015      Published: 11 December 2015
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21333001);National Key Basic Research Program of China (973)(2014CB932700);Thousand Talent Program for Young Outstanding Scientists of the Chinese Government
Corresponding Authors: Xiang SHAO,Kai WU     E-mail: shaox@ustc.edu.cn;kaiwu@pku.edu.cn
Cite this article:

Li WANG,Hong SHI,Hui-Hui LIU,Xiang SHAO,Kai WU. STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface. Acta Phys. -Chim. Sin., 2016, 32(1): 183-194.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512113     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/183

Fig 1 Rock-salt crystal structure of alkaline-earth metal oxide
Fig 2 Growth mode of CaO(001) films on Mo(001) surface24
Fig 3 Temperature-dependent flatness of CaO film surfaces27
Fig 4 XPS spectra of the Mo impurities in CaO films27
Fig 5 Heterogeneity of CaO films upon annealing27
Fig 6 Band bending induced by Mo dopants and temperature dependence of conduction band onset on the CaO films27
Fig 7 Close-up STM images of the four typical defects on the surfaces of CaO/Mo film surfaces31
Fig 8 Ring-like characteristic morphology induced by the discharging of the subsurface Mo donors and its disappearance upon adsorption of O2 molecule34
Fig 9 Band gap of the CaO films as a function of the amount of Li and Mo dopants (atomic fraction)35
Fig 10 Formation of 2D Au islands on the Mo-doped CaO film surfaces41
Fig 11 Morphology change of the Au islands on CaO film surfaces tailored by doping and gas adsorption29, 35, 45
Fig 12 STM topographic images of Li films deposited on the Mo-doped CaO/Mo(001) film surface46
Fig 13 Adsorption and dissociation of O2 on the Mo-doped CaO(001) film surface47
Fig 14 Adsorption of H2O on the CaO(001) film surface at room temperature53
1 Pacchioni G. ; Freund H. J. Chem. Rev. 2013, 113, 4035.
2 Campbell C. T. ; Sauer J. Chem. Rev. 2013, 113, 3859.
3 Surnev S. ; Fortunelli A. ; Netzer F. P. Chem. Rev. 2013, 113, 4314.
4 Reddy E. P. ; Smirnoiotis P. G. J. Phys. Chem. B 2004, 108, 7794.
5 Snis A. ; Panas I. Surf. Sci 1998, 412/413, 477.
6 Livraghi S. ; Paganini M. C. ; Giamello E. J. Mol. Catal. A: Chem. 2010, 322, 39.
7 Lee Y. C. ; Montano P. A. Surf. Sci. 1984, 143, 423.
8 Kawashima A. ; Matsubara K. ; Honda K. Bioresource Technol. 2009, 100, 696.
9 Alonso, D. M.; Mariscal, R.; Granados, M. L.; Maireles-Torres, P. Catal. Today 2009, 143, 167. doi: 10.1016/j.cattod. 2008.09.021.
10 Najafpour M. M. ; Ehrenberg T. ; Wiechen M. ; Kurz P. Angew. Chem. Int. Edit. 2010, 49, 2233.
11 Liu X. J. ; He H. Y. ; Wang Y. J. ; Zhu S. L. ; Piao X. L. Fuel 2008, 87, 216.
12 Granados M. L. ; Alonso D. M. ; Alba-Rubio A. C. ; Mariscal R. ; Ojeda M. ; Brettes P. Energy & Fuels 2009, 23, 2259.
13 Doytl C. S. ; Kendelewicz T. ; Carrier X. ; Brown G. E. Jr. Surf. Rev. Lett. 1999, 6, 1247.
14 Liu P. ; Kendelewicz T. ; Brown G. E., Jr. ; Parks G. A. ; Pianettaet P. Surf. Sci. 1998, 416, 326.
15 Kadossov E. B. ; Burghaus U. J. Phys. Chem. C 2008, 112, 7390.
16 Kadossov E. B. ; Burghaus U. Commun 2008, 4073
17 Norenberg H. ; Harding J. H. Phys. Rev. B 1999, 59, 9842.
18 Ochs D. ; Braun B. ; Maus-Friedrichs W. ; Kempter V. Surf. Sci. 1998, 417, 406.
19 Bebensee F. ; Voigts F. ; Maus-Friedrichs W. Surf. Sci. 2008, 602, 1622.
20 Losego M. D. ; Mita S. ; Collazo R. ; Sitar Z. ; Maria J. P. J. Vac. Sci. Technol. B 2007, 25, 1029.
21 Iedema M. J. ; Kizhakvariam N. ; Cowin J. P. J. Phys. Chem. B 1998, 102, 693.
22 Nilius N. Surf. Sci. Rep. 2009, 64, 595.
23 Shao X. ; Myrach P. ; Nilius N. ; Freund H. J. ; Martinez U. ; Prada S. ; Giordano L. ; Pacchioni G. Phys. Rev. B 2011, 83, 245407.
24 Shao X. ; Myrach P. ; Nilius N. ; Freund H. J. J. Phys. Chem. C 2011, 115, 8784.
25 Gonchara A. ; Rissea T. Molecular Phys. 2013, 111, 2708.
26 Benia H. M. ; Myrach P. ; Nilius N. ; Freund H. J. Surf. Sci. 2010, 604, 435.
27 Cui Y. ; Pan Y. ; Pascua L. ; Qiu H. S. ; Stiehler C. ; Kuhlenbeck H. ; Nilius N. ; Freund H. J. Phys. Rev. B 2015, 91, 035418.
28 Pal J. ; Smerieri1M. ; Celasco E. ; Savio1 L. ; Vattuone L. ; Roccaet M. Phys. Rev. Lett. 2014, 112, 126102.
29 Shao X. ; Nilius N. ; Freund H. J. Phys. Rev. B 2012, 85, 115444.
30 McFarland E. W. ; Metiu H. Chem. Rev. 2013, 113, 4391.
31 Cui Y. ; Shao X. ; Prada S. ; Giordano L. ; Pacchioni G. ; Freund H. J. ; Nilius N. Phys. Chem. Chem. Phys. 2014, 16, 12764.
32 Zheng H. ; Kroger J. ; Berndt R. Phys. Rev. Lett. 2012, 108, 076801.
33 Zheng H. ; Weismann A. ; Berndt R. Phys. Rev. Lett. 2013, 110, 226101.
34 Cui Y. ; Nilius N. ; Freund H. J. ; Prada S. ; Giordano L. ; Pacchioni G. Phys. Rev. B 2013, 88, 205421.
35 Shao X. ; Nilius N. ; Freund H. J. J. Am. Chem. Soc. 2012, 134, 2532.
36 Stavale F. ; Shao X. ; Nilius N. ; Freund H. J. ; Prada S. ; Giordano L. ; Pacchioni G. J. Am. Chem. Soc. 2012, 134, 11380.
37 Widmann D. ; Behm R. J. Accounts Chem. Res. 2014, 47, 740.
38 Sterrer M. ; Risse T. ; Heyde M. ; Rust H. P. ; Freund H. J. Phys. Rev. Lett. 2007, 98, 206103.
39 Sterrer M. ; Risse T. ; Martinez U. ; Giordano L. ; Heyde M. ; Rust H. P. ; Pacchioni G. ; Freund H. J. Phys. Rev. Lett. 2007, 98, 096107.
40 Lin X. ; Yang B. ; Benia H. M. ; Myrach P. ; Yulikov M. ; Aumer A. ; Brown M. A. ; Sterrer M. ; Bondarchuk O. ; Kieseritzky E. ; Rocker J. ; Risse T. ; Gao H. J. ; Nilius N. ; Freund H. J. J. Am. Chem. Soc. 2010, 132, 7745.
41 Shao X. ; Prada S. ; Giordano L. ; Pacchioni G. ; Nilius N. ; Freund H. J. Angew. Chem. Int. Edit. 2011, 50, 11525.
42 Cui Y. ; Stiehler C. ; Nilius N. ; Freund H. J. Phys. Rev. B 2015, 92, 075444.
43 Frondelius P. ; Häkkinen H. ; Honkala K. Angew. Chem. Int. Edit. 2010, 49, 7913.
44 Calaza F. ; Stiehler C. ; Fujimori Y. ; Sterrer M. ; Beeg S. ; Ruiz-Oses M. ; Nilius N. ; Heyde M. ; Parviainen T. ; Honkala K. ; Häkkinen H. ; Freund H. J. Angew. Chem. Int. Edit. 2015, 54, 12484.
45 Cui Y. ; Huang K. ; Nilius N. ; Freund H. J. Faraday Discuss. 2013, 162, 153.
46 Shao X. ; Cui Y. ; Schneider W. D. ; Nilius N. ; Freund H. J. J. Phys. Chem. C 2012, 116, 17980.
47 Cui Y. ; Shao X. ; Baldofski M. ; Sauer J. ; Nilius N. ; Freund H. J. Angew. Chem. Int. Edit. 2013, 52, 11385.
48 Schwach P. ; Willinger M. G. ; Trunschke A. ; Schlögl R. Angew. Chem. Int. Edit. 2013, 52, 11381.
49 Shin H. J. ; Jung J. ; Motobayashi K. ; Yanagisawa S. ; Morikawa Y. ; Kim Y. ; Kawai M. Nat. Mater. 2010, 9, 442.
50 Dulub O. ; Meyer B. ; Diebold U. Phys. Rev. Lett. 2005, 95, 136101.
51 Odelius M. Phys. Rev. Lett. 1999, 82, 3919.
52 Brown M. ; Fujimori Y. ; Ringleb F. ; Shao X. ; Stavale F. ; Nilius N. ; Sterrer M. ; Freund H. J. J. Am. Chem. Soc. 2011, 133, 11668.
53 Zhao X. H. ; Shao X. ; Fujimori Y. ; Bhattacharya S. ; Ghiringhelli L. M. ; Freund H. J. ; Sterrer M. ; Nilius N. ; Levchenko S. V. J. Phys. Chem. Lett. 2015, 6, 1204.
54 Yamada T. ; Tamamori S. ; Okuyama H. ; Aruga T. Phys. Rev. Lett. 2006, 96, 036105.
55 He Y. B. ; Li W. K. ; Gong X. Q. ; Dulub O. ; Selloni A. ; Diebold U. J. Phys. Chem. C 2009, 113, 10329.
56 Chen J. ; Guo J. ; Meng X. Z. ; Peng J. B. ; Sheng J. M. ; Xu L. M. ; Jiang Y. ; Li X. Z. ; Wang E. G. Nat. Commun. 2014, 5, 4056.
[1] Guodong SUN,Xi KANG,Shan JIN,Xiaowu LI,Daqiao HU,Shuxin WANG,Manzhou ZHU. Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol)[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 799-804.
[2] Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.
[3] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[4] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[5] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 314-328.
[6] Hai-Fei WU,Yao CHEN,Shan-Hu XU,Yong-Hong YAN,Jian-Xiao SI,Yong-Sheng TAN. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 419-425.
[7] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531.
[8] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[9] Er-Long SONG,Lin-Feng LAN,Zhen-Guo LIN,Sheng SUN,Wei SONG,Yu-Zhi LI,Pei-Xiong GAO,Peng ZHANG,Jun-Biao PENG. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2092-2098.
[10] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[11] Xue ZHANG,Yang HAN,Shuang-Zhi CHAI,Nan-Tao HU,Zhi YANG,Hui-Juan GENG,Hao WEI. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1330-1346.
[12] Zhan-Guo LI,Yu-Ting ZHANG,Qiang XIE,Heng-Li LI,Li-Jing SUN,Xiao-Feng SONG,Li-Juan WANG. NO2 Sensors Based on p-6P Heterogametic Induction Growth of Copper Phthalocyanine Thin Films[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1005-1011.
[13] Ji-Ye XIA,Guo-Dong DONG,Bo-Yuan TIAN,Qiu-Ping YAN,Jie HAN,Song QIU,Qing-Wen LI,Xue-Lei LIANG,Lian-Mao PENG. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1029-1035.
[14] Xue-Mei HU,Xiang-Dong GAO,Xiao-Min LI,Zheng-Ying GU,Ying SHI,Yong-Qing WU. Microstructure and Band Gap Modulation of SrSn1-xCoxO3 Epitaxial Thin Films via Pulsed Laser Deposition[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 828-833.
[15] Nai-En SHI,Chuan-Yuan SONG,Jun ZHANG,Wei HUANG. Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2447-2461.