Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (1): 171-182    DOI: 10.3866/PKU.WHXB201512152
REVIEW     
Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals
Yan-Xiao NING,Qiang FU*(),Xin-He BAO*()
Download: HTML     PDF(40389KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Photoemission electron microscopy (PEEM)/low energy electron microscopy (LEEM) are surface techniques that can be used to image surface structure, electronic states, and surface chemistry. Important applications of the technique in catalysis, energy, nano science, and material sciences have been seen. In this paper, we briefly introduce the principle of PEEM/LEEM and the recent advances of the technique. Then, some applications of PEEM/LEEM in dynamic studies of surface physics and chemistry of two-dimensional (2D) atomic crystals are highlighted, which include the growth of 2D atomic crystals, the formation of 2D heterostructures, the intercalation of the 2D materials, and chemical reactions confined under the 2D materials. Using surface imaging, micro-region low energy electron diffraction (μ-LEED), and the intensity–voltage (I–V) curves, the kinetics of 2D material growth and reactions at the 2D material/solid interfaces can be deeply understood.



Key wordsPhotoemission electron microscopy      Low energy electron microscopy      Two-dimensionalatomic crystal      Graphene      Interface reaction      Catalysis     
Received: 25 October 2015      Published: 15 December 2015
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21573224, 21222305, 21373208, 21321002);Ministry of Science and Technology of China(2013CB933100, 2013CB834603)
Corresponding Authors: Qiang FU,Xin-He BAO     E-mail: qfu@dicp.ac.cn;Email:xhbao@dicp.ac.cn
Cite this article:

Yan-Xiao NING,Qiang FU,Xin-He BAO. Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals. Acta Physico-Chimica Sinca, 2016, 32(1): 171-182.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512152     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/171

Fig 1 Electron lens system of the Dalian DUV-PEEM/AC-LEEM system
Fig 2 (a) PEEM image of mosaic graphene on Cu foil33; (b) intensity–voltage (IV) curves recorded at the identified spots of mosaic graphene33; (c) IV characteristics obtained from graphene with different laryers on Pt(111) surface38
Fig 3 Time-laspe sequence of LEEM images showing the growth of a first-layer graphene on Ru(0001)40, 41
Fig 4 Real-time LEEM images (a–d) of the formation of monolayer graphene-boron nitride heterostructures on Ru(0001) surface and the related LEED patterns (e, f)42
Fig 5 Growth and identification of h-BN/graphene bilayer structures on Ni(111) surface29
Fig 6 (a) Time-elapsed PEEM images recorded in situ from a graphene covered Ru(0001) surface at O2 atmosphere; (b) evolution of dimensions of the islands parallel to the step and perpendicular to the step as a function of the segregation time and oxidation time; (c) evolution of dimensions of the islands parallel to the step at different temperatures as a function of the oxidation time34
Fig 7 (a) Sequence of LEEM images obtained during high-temperature O2 exposure with oxygen etching of graphene domain growing over Ru(0001) surface; (b) time-dependent image intensity [I(x, t) map] along the line marked in (a); (c) intercalation and selective oxidation of the Ru(0001) surface beneath graphene at low-temperature O2 exposure; (d) I(x, t) map corresponding to (c); (e) Arrhenius plots showing different activation energies for intercalation (0.38 eV) and etching (1.1 eV); (f) derived net reaction rates (v) for etching and intercalation52
Fig 8 (a–f) Series of LEEM images recorded from a single-layer graphene island on Pt(111); (g) dependence of diffraction electron intensity on incident electron energy (IV) curves46
Fig 9 (a, b) In-situ LEEM images of the CO oxidation process; (c) plot of the length of the 1D CO molecular column as a function of reaction time46
Fig 10 (a, b) In-situ LEEM images recorded during h-BN growth on Pt(111) (the lines mark the nucleation location); (c) STM image of the h-BN/Pt(111) surface; (d) μ-LEED pattern from the h-BN/Pt(111) surface region; (e–g) in-situ LEEM images acquired from a h-BN/Pt(111) surface with 6.6 × 10–6 Pa CO at room temperature; (h) μ-LEED pattern of the h-BN/Pt(111) surface47
1 Tromp R. M. ; Reuter M. C. Ultramicroscopy 1991, 36 (1|3), 99.
2 Engel W. ; Kordesch M. E. ; Rotermund H. H. ; Kubala S. ; von Oertzen A. Ultramicroscopy 1991, 36 (1|3), 148.
3 Bauer E. Rep. Prog. Phys 1994, 57 (9), 895.
4 Tromp R. M. Ibm. J. Res. Develop 2000, 44 (4), 503.
5 Ertl G. Angew. Chem. Int. Edit 2008, 47 (19), 3524.
6 Imbihl R. J. Electron. Spectrosc. Relat. Phenom 2012, 185 (10), 347.
7 Luer Ben B. ; Janek J. ; Gunther S. ; Kiskinova M. ; Imbihl R. Phys. Chem. Chem. Phys 2002, 4 (12), 2673.
8 Luerβen B. ; Mutoro E. ; Fischer H. ; Günther S. ; Imbihl R. ; Janek J. Angew. Chem. Int. Edit 2006, 45 (9), 1473.
9 Man, K. L.; Altman, M. S. J. Phys.: Condens. Matter 2012, 24 (31), 314209. doi: 10.1088/0953-8984/24/31/314209.
10 Sutter P. ; Sutter E. Adv. Funct. Mater 2013, 23 (20), 2617.
11 Frazer B. H. ; Girasole M. ; Wiese L. M. ; Franz T. ; Stasio G. D. Ultramicroscopy 2004, 99 (2|3), 87.
12 Fukidome H. ; Kotsugi M. ; Nagashio K. ; Sato R. ; Ohkochi T. ; Itoh T. ; Toriumi A. ; Suemitsu M. ; Kinoshita T. Sci. Rep 2014, 4, 3713.
13 Xiong G. ; Shao R. ; Peppernick S. J. ; Joly A. G. ; Beck K. M. ; Hess W. P. ; Cai M. ; Duchene J. ; Wang J. Y. ; Wei W. D. JOM 2010, 62 (12), 90.
14 Günther S. ; Kaulich B. ; Gregoratti L. ; Kiskinova M. Prog. Surf. Sci 2002, 70 (4|8), 187.
15 Choi J. ; Wu J. ; Won C. ; Wu Y. Z. ; Scholl A. ; Doran A. ; Owens T. ; Qiu Z. Q. Phys. Rev. Lett 2007, 98 (20), 207205.
16 Chung W. F. ; Altman M. S. Ultramicroscopy 1998, 74 (4), 237.
17 Loginova E. ; Bartelt N. C. ; Feibelman P. J. ; McCarty K. F. New J. Phys 2009, 11 (6), 063046.
18 Bauer E. J. Electron. Spectrosc. Relat. Phenom 2012, 185 (10), 314.
19 Bauer E. Ultramicroscopy 2012, 119, 18.
20 Tromp R. M. ; Hannon J. B. ; Ellis A. W. ; Wan W. ; Berghaus A. ; Schaff O. Ultramicroscopy 2010, 110 (7), 852.
21 Tromp R. M. ; Hannon J. B. ; Wan W. ; Berghaus A. ; Schaff O. Ultramicroscopy 2013, 127 (25)
22 Cao N. ; Fu Q. ; Bao X. H. Bulletin of Chinese Academy of Sciences 2012, 27 (1), 103.
22 曹凝; 傅强; 包信和. 中国科学院院刊, 2012, 27 (1), 103.
23 Meyer zu Heringdorf F. J. ; Reuter M. ; Tromp R. Nature 2001, 412 (6846), 517.
24 Schmid A. K. ; Bartelt N. C. ; Hwang R. Q. Science 2000, 290 (5496)
25 Santos B. ; Loginova E. ; Mascaraque A. ; Schmid A. K. ; McCarty K. F. ; Figuera J. D. L. J. Phys.: Condens. Matter 2009, 21 (31), 314011.
26 Grinter D. C. ; Yim C. M. ; Pang C. L. ; Santos B. ; Menteş T. O. ; Locatelli A. ; Thornton G. J. Phys. Chem. C 2013, 117 (32), 16509.
27 Qin H. ; Chen X. ; Li l. ; Sutter P. W. ; Zhou G. Proc. Natl. Acad. Sci 2015, 112 (2), E103.
28 Wu Q. ; Zdyb R. ; Bauer E. ; Altman M. S. Phys. Rev. B 2013, 87 (10), 104410.
29 Yang Y. ; Fu Q. ; Li H. ; Wei M. ; Xiao J. ; Wei W. ; Bao X. ACS Nano 2015, 9 (12), 11589.
30 Yeh P. C. ; Jin W. ; Zaki N. ; Zhang D. ; Sadowski J. T. ; Al-Mahboob A. ; van der Zande A. M. ; Chenet D. A. ; Dadap J. I. ; Herman I. P. ; Sutter P. ; Hone J. ; Osgood R. M. Phys. Rev. B 2014, 89 (15), 155408.
31 Kim M. ; Bertram M. ; Pollmann M. ; von Oertzen A. ; Mikhailov A. S. ; Rotermund H. H. ; Ertl G. Science 2001, 292 (5520), 1357.
32 Cui Y. ; Fu Q. ; Bao X. Phys. Chem. Chem. Phys 2010, 12 (19), 5053.
33 Yan K. ; Wu D. ; Peng H. ; Jin L. ; Fu Q. ; Bao X. ; Liu Z. Nat. Commun 2012, 3, 1280.
34 Cui Y. ; Fu Q. ; Zhang H. ; Tan D. ; Bao X. J. Phys. Chem. C 2009, 117 (47), 20365.
35 Gao L. ; Ren W. ; Xu H. ; Jin L. ; Wang Z. ; Ma T. ; Ma L. P. ; Zhang Z. ; Fu Q. ; Peng L. M. ; Bao X. ; Cheng H. M. Nat. Commun 2012, 3, 699.
36 Liu L. ; Park J. ; Siegel D. A. ; McCarty K. F. ; Clark K. W. ; Deng W. ; Basile L. ; Idrobo J. C. ; Li A. P. ; Gu G. Science 2014, 343 (6167), 163.
37 Hibino H. ; Kageshima H. ; Maeda F. ; Nagase M. ; Kobayashi Y. ; Yamaguchi H. Phys. Rev. B 2008, 77 (7), 075413.
38 Sutter P. ; Sadowski J. T. ; Sutter E. Phys. Rev. B 2009, 80 (24), 245411.
39 Geim A. K. Science 2009, 324 (5934), 1530.
40 Sutter P. W. ; Flege J. I. ; Sutter E. A. Nat Mater 2008, 7 (5), 406.
41 Jin L. ; Fu Q. ; Zhang H. ; Mu R. ; Zhang Y. ; Tan D. ; Bao X. J. Phys. Chem. C 2012, 116 (4), 2988.
42 Sutter P. ; Cortes R. ; Lahiri J. ; Sutter E. Nano Lett 2012, 12 (9), 4869.
43 Geim A. ; Grigorieva I. Nature 2013, 499 (7459), 419.
44 Jin L. ; Fu Q. ; Dong A. ; Ning Y. ; Wang Z. ; Bluhm H. ; Bao X. J. Phys. Chem. C 2014, 118 (23), 12391.
45 Sutter P. ; Albrecht P. ; Tong X. ; Sutter E. J. Phys. Chem. C 2013, 117 (12), 6320.
46 Mu R. ; Fu Q. ; Jin L. ; Yu L. ; Fang G. ; Tan D. ; Bao X. Angew. Chem. Int. Edit 2012, 51 (20), 4856.
47 Zhang Y. ; Weng X. ; Li H. ; Li H. ; Wei M. ; Xiao J. ; Liu Z. ; Chen M. ; Fu Q. ; Bao X. Nano Lett 2015, 15 (5), 3616.
48 Zhang Y. ; Wei M. ; Fu Q. ; Bao X. Sci. Bull 2015, 60 (18), 1572.
49 Du Z. ; Sarofim A. F. ; Longwell J. P. ; Mims C. A. Energ. Fuel 1991, 5 (1), 214.
50 Hahn J. R. ; Kang H. ; Lee S. M. ; Lee Y. H. J. Phys. Chem. B 1999, 103 (45), 9944.
51 Starodub E. ; Bartelt N. C. ; McCarty K. F. J. Phys. Chem. C 2010, 114 (11), 5134.
52 Sutter P. ; Sadowski J. T. ; Sutter E. A. J. Am. Chem. Soc 2010, 132 (23), 8175.
53 Yao Y. X. ; Fu Q. ; Zhang Y. Y. ; Weng X. F. ; Li H. ; Chen M. S. ; Jin L. ; Dong A. Y. ; Mu R. T. ; Jiang P. ; Liu L. ; Bluhm H. ; Liu Z. ; Zhang S. B. ; Bao X. H. Proc. Natl. Acad. Sci. U. S. A 2014, 111 (48), 17023.
54 Hrelescu C. ; Sau T. K. ; Rogach A. L. ; Jäckel F. ; Laurent G. ; Douillard L. ; Charra F. Nano Lett 2011, 11 (2), 402.
55 Douillard L. ; Charra F. J. Electron. Spectrosc. Relat. Phenom 2013, 189 (Supplement), 24.
56 Mutoro E. ; Hellwig C. ; Luerssen B. ; Guenther S. ; Bessler W. G. ; Janek J. Phys. Chem. Chem. Phys 2011, 13 (28), 12798.
57 Schmidt T. ; Groh U. ; Fink R. ; Umbach E. ; Schaff O. ; Engel W. ; Richter B. ; Kuhlenbeck H. ; Schlogl R. ; Freund H. J. ; Bradshaw A. M. ; Preikszas D. ; Hartel P. ; Spehr R. ; Rose H. ; Lilienkamp G. ; Bauer E. ; Benner G. Surf. Rev. Lett 2002, 9 (1), 223.
58 Guo F. Z. ; Wakita T. ; Shimizu H. ; Matsushita T. ; Yasue T. ; Koshikawa T. ; Bauer E. ; Kobayashi K. J. Phys.: Condens. Matter 2005, 17 (16), S1363.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Fang CHENG,Mingyang LI,Wei HE,Hanqi WANG. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 177-184.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[4] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[5] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[6] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[9] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[10] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[11] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[12] Hao HUANG,Ran LONG,Yu-Jie XIONG. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 661-669.
[13] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 691-708.
[14] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[15] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.