Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (1): 75-84    DOI: 10.3866/PKU.WHXB201512153
REVIEW     
Liquid-Phase Heterogeneous Catalytic Reactions by Metal-Free Graphene-Based Catalysts
Jing-He YANG1,Duo YANG1,Pei TANG2,Ding MA2,*()
1 Department of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan Province, P. R. China
2 Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download: HTML     PDF(14257KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Metal-free carbon catalysts have been receiving increasing attention in the fields of nanomaterials and catalysis. Compared with conventional metal catalysts, there are many advantages for metal-free carbon catalysts, such as simple synthesis, stable structure, large surface area, and diverse applications. Graphene is one layer of carbon atoms and has a periodic structure of aromatic carbon atoms. Graphene oxide is a highly oxidized form of graphene. As a new carbon material, its application in catalysis has emerged over the past 5 years. Graphene-based materials can efficiently catalyze hydrocarbon conversion, organic synthesis, energy conversion, and other heterogeneous catalytic processes. This review highlights the recent progress in the development of metal-free graphene-based catalysts (graphene oxide and graphene) and associated catalytic reactions.



Key wordsGraphitic oxide      Graphene      Catalysis      Metal-free      Carbon     
Received: 30 October 2015      Published: 15 December 2015
MSC2000:  O643.32+2  
Fund:  the National Natural Science Foundation of China(21403053);Joint Funds of the National Natural ScienceFoundation of China(U1404503)
Corresponding Authors: Ding MA     E-mail: dma@pku.edu.cn
Cite this article:

Jing-He YANG,Duo YANG,Pei TANG,Ding MA. Liquid-Phase Heterogeneous Catalytic Reactions by Metal-Free Graphene-Based Catalysts. Acta Phys. -Chim. Sin., 2016, 32(1): 75-84.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512153     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I1/75

Fig 1 Schematic diagrams of graphene and related materials
Fig 2 Schematic diagram for preparation of reduced graphene oxide
CatalystReactionReaction conditionsRemarks
KOH/G20aerobic oxidation of 9H-fluorenes to 9-fluorenonescatalyst (7 mg), substratre (5 mmol), KOH (5 mmol), DMF (15 mL), room temperature, 16 h5 cycles
N doped G21aerobic oxidation of benzylic alcoholscatalyst (30 mg), alcohol (0.1 mmol), H2O (80 mL), O2 (1.01 × 105 Pa), 70℃, 10 hthe doping of N atoms being the active sites
(B, N) doped G9aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrenecatalyst (5 mg), tetralin (1 mL), O2 120 ℃synergism of B and N doping;
2 cycles
rGO23oxidation of benzene to phenol by H2O2.catalyst (20 mg), substrate (130 mg), oxidant (2.4 mL, 30%), acetonitrile (1.2 mL), 60 ℃, 16 hmetal impurities study; 7 cycles
N doped G24oxidation of benzylic positions by tert-buthylhydroperoxidecatalyst (10 mg), substrate (1.0 mmol), TBHP (3.0 mmol, 65%(w) in water), H2O (10 mL), 80 ℃, 24 hN doping; 5 cycles
meso-G26acrobic oxidation of cyclohexanecatalyst (30 mg), substrate (14.0 g), cyclohexanone as initiator (0.39 g), acetone (9.6 g), O2 (1.5 MPa), 125 ℃, 8 hMetal impurities do not promote catalytic activity;
4 cycles
rGO30hydrogenation of nitrobenzenereagent hydrogen or hydrazine hydraterGO shows better catalytic capabilities than activated carbon and Pt/SiO2
rGO or (N)rGO27, 284-nitrophenol reduction to 4-aminophenol by NaBH4evidence of adsorption of nitrophenol on graphene no leaching; 8 cycles
rGO29synthesis of dipyrromethane and calix [4] pyrroleactive sites are assumed to be the acidic sites
GO27aerobic oxidation of alcohols (i.e., benzyl alcohol) and unsaturated hydrocarbons (i.e., cis-stilbene)catalyst (100 mg; 5%–200%(w) respect substrate), atmospheric pressure, 25–150 ℃, 3–144 hmetal impurities are not responsible of the catalytic activity, 10 cycles
GO28aerobic oxidation of benzyl alcohol to benzaldehydedensity functional theory studyactive sites of GO are regeneratedby molecular O2
GO29aerobic oxidation of amines to iminescatalyst (5%(w), amine (1 g), 90 ℃, open air conditions, 12 hmetal impurities are excluded as active sites; 6 cycles
GO27hydration of alkynescatalyst (100 mg, 200%(w), substrate (50 mg), 100 ℃, 24 h98%–27% conversions
GO34Michael additioncatalyst (0.5 mg$ { { \cdot } } $mL–1, 0.5 mL) t-β-nitrostyrene (0.1676 mmol), 2, 4-pentanedione (1.5 equiv), base (1.1 equiv), 18-crown-6 ether (1.1 equiv), room temperaturespecially epoxy and hydroxyl groups promoting the reaction
GO35aza-Michael addition of amines to alkenescatalyst (0.5 mL of 0.05 mg$ { { \cdot } } $mL–1), amine (1 mmol), α, β-unsaturated compounds (1.2 mmol), room temperature, < 30 minoxygen groups are responsible for the catalytic activities;
9 cycles
GO36dehydrative etherification of benzyl alcoholsubstrate to catalyst ratio 20 mL$ { { \cdot } } $g–1, 150 ℃, 24 h85.4% yield to dibenzyl ether
Table 1 Catalytic reaction using graphitic oxide (GO), graphene (G) or reduced graphene oxide (rGO) as catalysts7
Fig 3 Aerobic oxidation of benzyl alcohol and 1-phenylethanol catalyzed by N-doped graphene as catalyst21
EntryCatalystt/hConversion/%Phenol selectivity/%Ea/(kJ$ { { \cdot } } $mol–1)
1blank4
2graphite43.28756
3rGO415.59747
4rGO818.097
5rGO1617.898
6aPt/SiO216~0
7GO161.999118
8brGO–H1618.599
9cMn/ rGO160.39932
10TS-1 (0.2 μm)168.826.4 
11TS-1 (1 μm)164.414.3 
Table 2 Direct oxidation of benzene to phenol under various conditions23
Fig 4 Relation between yield towards phenol and reaction barriers and proposed mechanism for oxidation of benzene23
EntryCatalystSurface area/(m2$ { { \cdot } } $g–1)wN/%Conversion/%Acetophenone yield/%
1blank2.71.9
2rGO423.60.456.027.3
3N-rGO-1.1447.11.163.736.0
4N-rGO-3.6437.33.695.484.4
5N-rGO-4.6232.44.697.986.4
6bN-rGO-8.983.78.998.691.3
Table 3 Catalytic activity of N-graphene materials for the oxidation of ethylbenzene24
CatalystaConversion/%Cyclohexanone + cyclohexanol selectivity/%
blank2.264.8
μ-D4.431.4
nano-D8.840.3
G3256.260.1
G40007.467.7
rGO17.339.3
meso-Gb22.134.4
Table 4 Catalytic performances of carbon materials in the aerobic cyclohexane oxidation promoted by initiator26
Fig 5 Oxidation of benzyl alcohol and cis-stilbene using graphene oxide27
Fig 6 Graphitic oxide of alkali reduction and acidic proton treatment29
CatalystaSurface area/(m2$ { { \cdot } } $g–1)Yield/%b104Activity/
(mol$ { { \cdot } } $m2$ { { \cdot } } $h–1)
none9.2
rGO456.994.22.0
GO26.891.134.3
Pt/SiO2(1%)b96.0
carbon black62.57.91.2
natural graphite8.1
expanded graphite63.612.61.9
pyrolytic GO423.621.60.5
Table 5 Hydrogenation of nitrobenzene over different carbon catalysts30
EntryCatalystYield/%a
1carbon black (0.49% Mn)1.8
2carbon black (0.97% Mn)3.5
3carbon black (1.33% Mn)1.8
4carbon black (3.83% Mn)1.7
5carbon black (5.85% Mn)2.2
6GO (0.0024% Mn)88.0
7rGO (0.0090% Mn)89.0
Table 6 Reduction of chloronitrobenzene over carbon black with different Mn content30
Fig 7 Model of interaction between nitrobenzene and graphene sheets30
Fig 8 Base synthesis of dipyrromethane and calix[4]pyrrole catalyzed by GO33
Fig 9 Michael addition catalyzed by GO as phase transfer catalyst35
Fig 10 Catalytic alkylation of arenes via GO37
Fig 11 Mechanism for the GO catalyzed alkylation of arenes37
1 Blaser H. U. ; Malan C. ; Pugin B. ; Spindler F. ; Steiner H. ; Studer M. Adv. Syn. Catal. 2003, 345, 103.
2 Astruc D. ; Lu F. ; Aranzaes J. R. Angew. Chem. Int. Edit. 2005, 44, 7852.
3 Balasubramanian K. ; Burghard M. Small 2005, 1, 180.
4 Banerjee S. ; Hemraj-Benny T. ; Wong S. S. Adv. Mater. 2005, 17, 17.
5 Baleizao C. ; Garcia H. Chem. Rev. 2006, 106, 3987.
6 Busca G. Chem. Rev. 2007, 107, 5366.
7 Navalon S. ; Dhakshinamoorthy A. ; Alvaro M. ; Garcia H. Chem. Rev. 2014, 114, 6179.
8 Dhakshinamoorthy A. ; Navalon S. ; Alvaro M. ; Garcia H. ChemSusChem 2012, 5, 46.
9 Dhakshinamoorthy A. ; Primo A. ; Concepcion P. ; Alvaro M. ; Garcia H. Chem. -Eur. J. 2013, 19, 7547.
10 Zhang Y. ; Zhang L. ; Zhou C. Accounts Chem. Res. 2013, 46, 2329.
11 Wei, D.; Wu, B.; Guo, Y.; Yu, G.; Liu, Y. Accounts Chem. Res. 2013, 46, 106. doi: 10.1021/ar300103f.
12 Quintana M. ; Vazquez E. ; Prato M. Accounts Chem. Res. 2013, 46, 138.
13 Park J. ; Yan M. Accounts Chem. Res. 2013, 46, 181.
14 Malig J. ; Jux N. ; Guldi D. M. Accounts Chem. Res. 2013, 46, 53.
15 Koehler F. M. ; Stark W. J. Accounts Chem. Res. 2013, 46, 2297.
16 James D. K. ; Tour J. M. Accounts Chem. Res. 2013, 46, 2307.
17 Dreyer D. R. ; Park S. ; Bielawski C. W. ; Ruoff R. S. Chem. Soc. Rev. 2010, 39, 228.
18 Pumera M. Chem. Soc. Rev. 2010, 39, 4146.
19 Chua C. K. ; Pumera M. Chem. Soc. Rev. 2014, 43, 291.
20 Zhang X. ; Ji X. ; Su R. F. ; Weeks B. L. ; Zhang Z. ; Deng S. L. ChemPlusChem 2013, 78, 703.
21 Long J. ; Xie X. ; Xu J. ; Gu Q. ; Chen L. ; Wang X. ACS Catal. 2012, 2, 622.
22 Yamaguchi K. ; Mizuno N. Chem. -Eur. J. 2003, 9, 4353.
23 Yang J. H. ; Sun G. ; Gao Y. ; Zhao H. ; Tang P. ; Tan J. ; Lu A. H. ; Ma D. Energy Environ. Sci. 2013, 6, 793.
24 Gao Y. ; Hu G. ; Zhong J. ; Shi Z. ; Zhu Y. ; Su D. S. ; Wang J. ; Bao X. ; Ma D. Angew. Chem. Int. Edit. 2013, 52, 2109.
25 Li W. ; Gao Y. ; Chen W. ; Tang P. ; Li W. ; Shi Z. ; Su D. ; Wang J. ; Ma D. ACS Catal. 2014, 4, 1261.
26 Cao Y. H. ; Luo X. Y. ; Yu H. ; Peng F. ; Wang H. J. ; Ning G. Q. Catal. Sci. Technol. 2013, 3, 2654.
27 Dreyer D. R. ; Jia H. P. ; Bielawski C. W. Angew. Chem. Int. Edit. 2010, 49, 6813.
28 Boukhvalov D. W. ; Dreyer D. R. ; Bielawski C. W. ; Son Y. W. ChemCatChem 2012, 4, 1844.
29 Su C. L. ; Acik M. ; Takai K. ; Lu J. ; Hao S. J. ; Zheng Y. ; Wu P. P. ; Bao Q. L. ; Enoki T. ; Chabal Y. J. ; Loh K. P. Nat. Commun. 2012, 3, 1298.
30 Gao Y. J. ; Ma D. ; Wang C. L. ; Guan J. ; Bao X. H. Chem. Commun. 2011, 47, 2432.
31 Kong X. K. ; Sun Z. K. ; Chen M. ; Chen C. L. ; Chen Q. W. Energy Environ. Sci. 2013, 6, 3260.
32 Kong X. K. ; Chen Q. W. ; Lun Z. Y. J. Mater. Chem. A 2014, 2, 610.
33 Chauhan S. M. S. ; Mishra S. Molecules 2011, 16, 7256.
34 Kim Y. ; Some S. ; Lee H. Chem. Commun. 2013, 49, 5702.
35 Verma S. ; Mungse H. P. ; Kumar N. ; Choudhary S. ; Jain S. L. ; Sain B. ; Khatri O. P. Chem. Commun. 2011, 47, 12673.
36 Yu H. ; Wang X. ; Zhu Y. ; Zhuang G. ; Zhong X. ; Wang J. G. Chem. Phys. Lett. 2013, 583, 146.
37 Hu F. ; Patel M. ; Luo F. ; Flach C. ; Mendelsohn R. ; Garfunkel E. ; He H. ; Szostak M. J. Am. Chem. Soc. 2015, 137, 14473.
38 Medina J. ; Aviles F. ; Tapia A. Mol. Phys. 2015, 113, 1297.
39 Wang W. ; Sun T. ; Zhang Y. ; Wang Y. B. Comput. Theor. Chem. 2014, 1046, 64.
[1] Xiuli LU,Yingying HAN,Tongbu LU. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1014-1028.
[2] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[3] Yujing ZHANG,Xingchao DAI,Hongli WANG,Feng SHI. Catalytic Synthesis of Formamides with Carbon Dioxide and Amines[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 845-857.
[4] Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 838-844.
[5] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[6] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[7] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[8] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[9] Fang CHENG,Mingyang LI,Wei HE,Hanqi WANG. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 177-184.
[10] Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.
[11] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[12] Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1116-1123.
[13] Lin WANG,Liang XIN,Tatsuya ISHIYAMA,Qiling PENG,Shen YE,Akihiro MORITA. Microscopic Investigation of Ethylene Carbonate Interface: A Molecular Dynamics and Vibrational Spectroscopic Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1124-1135.
[14] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[15] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.