Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (3): 638-646    DOI: 10.3866/PKU.WHXB201512181
ARTICLE     
Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide
Qi-Liang HONG1,Yi-Hui DONG1,Wei ZHUANG2,Chao RAO1,Chang LIU1,*()
1 State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, Nanjing 210009, P. R. China
2 School of Biological and Pharmaceutical Engineering, Nanjing Technology University, Nanjing 211816, P. R. China
Download: HTML     PDF(2987KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Mesoporous TiO2 was prepared by calcinating H2Ti205 at 773.15 K. The sample was characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis. The adsorption behavior and mechanism of mesoporous TiO2 for lysozyme were investigated by isothermal adsorption experiments. The results show that the equilibrium experimental data were correlated with the Langmuir isotherm equation. The adsorption capacity first increased and then decreased with increasing pH value. The capacity showed a maximum value of 72.5 mg·g-1 when the pH value was 7.2. Lysozyme adsorbed on mesoporous TiO2 was extremely stable, and its amount on mesoporous TiO2 maintained 81.6% of its initial value after five adsorption and regeneration cycles. Furthermore, kinetic analysis was conducted using pseudo-first and pseudo-second order models. The adsorption of lysozyme on mesoporous TiO2 was described well by the pseudo-second order rate equation. The rate-determining step of the adsorption was the combined action of film diffusion and intraparticle diffusion. The adsorption thermodynamic analysis suggested ΔG0 < 0, ΔH0 > 0, and ΔS0 > 0, which indicated that the adsorption was a spontaneous and endothermic process with entropy increased.



Key wordsMesoporous TiO2      Lysozyme      Adsorption      Kinetics      Thermodynamics     
Received: 14 September 2015      Published: 18 December 2015
MSC2000:  O647  
Fund:  the National Key Basic Research Program of China(2013CB733501);National Natural Science Foundation of China(21136004, 21476106, 21506090);Natural Science Foundation of Jiangsu Province, China(BK20130929);Project of Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China
Corresponding Authors: Chang LIU     E-mail: changliu@njtech.edu.cn
Cite this article:

Qi-Liang HONG,Yi-Hui DONG,Wei ZHUANG,Chao RAO,Chang LIU. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide. Acta Physico-Chimica Sinca, 2016, 32(3): 638-646.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512181     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I3/638

Fig 1 N2 adsorption-desorption isotherm (A) and pore size distribution curve (B)
Adsorbent SBETa/(m2·g-1) Vtotalb/(cm3·g-1) DBJHc/nm
TiO2 89.8 0.327 9.56
Table 1 Textural parameters of TiO2
Fig 2 FESEM images of TiO2 at different magnifications
Fig 3 XRD pattern (A) and Raman spectrum (B) of TiO2
Fig 4 Adsorption isotherms of lysozyme onto TiO2
Fig 5 Langmuir (A) and Freundlich (B) adsorption isotherms
T/K Langmuir adsorption isotherm Freundlich adsorption isotherm
qm/(mg·g-1) b/(mL·mg-1) R2 KF/(mL·g-1) 1/n R2
283.15
293.15
303.15
313.15
56.75
62.69
77.10
90.01
12.96
19.64
24.61
33.87
0.998
0.993
0.992
0.994
63.88
73.92
100.18
155.39
0.345
0.295
0.326
0.397
0.939
0.879
0.907
0.759
Table 2 Langmuir and Freundlich parameters for adsorption of lysozyme onto TiO2
Fig 6 Curves of zeta potential of TiO2 and lysozyme with pH value
Fig 7 Effect of pH values on adsorption quantity of lysozyme onto TiO2
Fig 8 Effect of cycle times on the adsorption of lysozyme onto TiO2
Fig 9 Adsorption kinetics curves (A), simulation curves of pseudo-first-order (B), pseudo-second-order (C), and intraparticle diffusion (D) models of lysozyme onto TiO2
T/K qe, exp/(mg·g-1) Pseudo-first-order Pseudo-second-order
qe, cal/(mg·g-1) k1/h-1 R2 qe, cal/(mg·g-1) 103k2/(g·mg-1·h-1 k2qe2/(g·mg-1·h-1) R2
283.15
293.15
303.15
313.15
48.71
58.46
70.32
80.43
40.04
44.26
42.09
28.51
0.063
0.055
0.057
0.059
0.948
0.963
0.994
0.956
50.41
58.82
71.43
82.10
2.59
3.38
4.05
7.63
9.49
11.68
20.66
51.44
0.994
0.994
0.998
0.999
Table 3 Kinetic parameters for the adsorption of lysozyme onto TiO2
Fig 10 Relationship curve between lnK and 1/T
T/K b/(mL·mg-1) ρ/(mg·mL-1) K ΔG0/(kJ·mol-1) ΔH0/(kJ·mol-1) ΔS0/(J·mol-1·K-1)
283.15
293.15
303.15
313.15
12.96
19.64
24.61
33.87
999.7
998.2
995.6
992.2
721
1089
1362
1867
-14.98
-16.33
-17.68
-19.01
23.27
135.1
Table 4 Adsorption thermodynamics parameters of lysozyme onto TiO2
1 Andre E. ; Lutz M. ; Darrell V. ; Tian X. ; Eric M. ; Ponisseril S. ; Fred K. ; Vince C. ; Mike T. Nat. Mater. 2009, 8, 543.
2 Larson T. A. ; Joshi P. P. ; Sokolov K. ACS Nano 2012, 6, 9182.
3 Zhen X. ; Wang X. ; Xie C. ; Wu W. ; Jiang X. Q. Biomaterials 2013, 34, 1372.
4 Shao M. F. ; Ning F. Y. ; Zhao J.W. ; Wei M. ; Evans D. G. ; Duan X. J. Am. Chem. Soc. 2012, 134, 1071.
5 Lv Y. J. ; Lu G. Z. ; Wang Y. Q. ; Guo Y. L. ; Guo Y. ; Zhang Z. G. ; Wang Y. S. ; Liu X. H. Adv. Funct. Mater. 2007, 17, 2160.
6 Wu Z. X. ; Zhao D. Y. Chem. Commun. 2011, 47, 3332.
7 Díaz J. F. ; Balkus K. J. J. Mol. Catal. B: Enzym. 1996, 2, 115.
8 Takimoto A. ; Shiomi T. ; Ino K. Microporous Mesoporous Mat. 2008, 116, 601.
9 Wang A. M. ; Liu M. Q. ; Wang H. J. Biosci. Bioeng. 2008, 106, 286.
10 Rosenholm J. M. ; Sahlgren C. ; Linden M. Nanoscale 2010, 2, 1870.
11 Blin J. L. ; Su B. L. Langmuir 2002, 18, 5303.
12 Fuertes A. B. ; Valle-Vigon P. ; Sevilla M. J. Colloid Interface Sci. 2010, 349, 173.
13 Jiang Y. J. ; Sun Q. Y. ; Jiang Z. Y. Mater. Sci. Eng. C 2009, 29, 328.
14 Bao N. Z. ; Shen L. M. ; Feng X. ; Lu X. H. J. Am. Ceram.Soc. 2004, 87, 326.
15 He M. ; Feng X. ; Lu X. H. ; Ji X. Y. ; Liu C. ; Bao N. Z. ; Xie J.W. J. Chem. Eng. Jpn. 2003, 36, 1259.
16 Castrillo P. D. ; Olmos D. ; Amador D. R. J. Colloid Interface Sci. 2007, 308, 318.
17 Yang Z. H. ; Wang Y. F. ; Li L. C. ; Wang C. S. ; Lu X. H. Journal of Nanjing Tech. University 2012, 34, 7.
17 杨祝红; 王艳芳; 李力成; 王昌松; 陆小华.. 南京工业大学学报, 2012, 34, 7.
18 Li Q. N. ; Wang X. M. ; Lu X. H. ; Tian H. E. ; Jiang H. ; Lv G. ; Guo D. D. ; Wu C. H. ; Chen B. A. Biomaterials 2009, 30, 4708.
19 Wang H. Q. ; Yao Z. ; Sun Y. ; Zhou Z. ; Xiong Q. ; Zhong Z.X. Biotechnol. Bioprocess Eng. 2014, 19, 304.
20 Dong Y. H. ; An R. ; Zhuang W. ; Yao Z. ; Zhu Y. D. ; Liu C. ; Lu X. H. Journal of Chemical Industry and Engineering 2014, 65, 1750.
20 董依慧; 安蓉; 庄伟; 姚忠; 朱育丹; 刘畅; 陆小华.. 化工学报, 2014, 65, 1750.
21 Ravi S. S. ; Monoj K. M. Korean J. Chem. Eng. 2012, 29, 1782.
22 Bhattacharyya M. S. ; Hiwale P. ; Piras M. ; Medda L. ; Steri D. ; Piludu M. ; Salis A. ; Monduzzi M. J. Phys. Chem. C 2010, 114, 19928.
23 Wang D. ; Zhao J. ; Chen B. ; Zhu C. J. Phys.: Condens.Matter 2008, 20, 085212.
24 Li X. N. ; Xu Q. Y. ; Han G. M. ; Zhu W. Q. ; Chen Z. H. ; He X. B. ; Tian X. J. J. Hazard. Mater. 2009, 165, 469.
25 Shamim N. ; Liang H. ; Hidajat K. ; Uddin M. S. J. Colloid Interface Sci. 2008, 320, 15.
26 Su T. J. ; Lu J. R. ; Thomas R. K. ; Cui Z. F. ; Penfold J.J. Colloid Interface Sci. 1998, 203, 419.
27 Vander V. M. ; Norde W. ; Stuart M. C. Colloids Surf. B 2004, 35, 33.
28 Fu H. Y. ; Gao B. J. ; Niu Q. Y. Acta Phys. -Chim. Sin. 2010, 26, 359.
28 付红艳; 高保娇; 牛庆媛.. 物理化学学报, 2010, 26, 359.
29 Kitagawa, H.; Suzuki, I. The Fundamentals and Design for Adsorption; Chemical Industry Press: Beijing, 1983; pp 48-50;translated by Lu, Z. L. Kitagawa, H.; Suzuki, I.
29 吸附的基础与设计.鹿政理,译.北京:化学工业出版社, 1983: 48-50.
30 Sun Q. ; Yang L. Water Res. 2003, 37, 1535.
31 Karaca S. ; Gurses A. ; Ejder M. ; Acikyildiz M. J. Colloid Interface Sci. 2004, 277, 257.
32 Ya ng ; X Y. ; Al-Duri B. J. Colloid Interface Sci. 2005, 287, 25.
33 Lorenc-Grabowska E. ; Gryglewicz G. J. Colloid Interface Sci. 2005, 284, 416.
34 Shi N. ; Gao B. J. ; Yang Q. Acta Phys. -Chim. Sin. 2014, 30, 2168.
34 史楠; 高保娇; 杨青.. 物理化学学报, 2014, 30, 2168.
35 Zhou L. C. ; Meng X. G. ; Li J. M. ; Hu W. ; Liu B. ; Du J. Acta Phys. -Chim. Sin. 2012, 28, 1615.
35 周良春; 孟祥光; 李建梅; 胡伟; 刘波; 杜娟.. 物理化学学报, 2012, 28, 1615.
36 Wojciech P. ; Wladyslaw R. ; Anita P. Adv. Colloid Interface Sci. 2009, 152, 2.
37 Salama M. A. ; Burk R. C. Appl. Surf. Sci. 2008, 255, 1975.
38 Kuo C. Y. ; Wu C. H. ; Wu J. Y. J. Colloid Interface Sci. 2008, 327, 308.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 286-295.
[3] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 168-176.
[4] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.
[5] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[6] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[7] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[8] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[9] Andrew SCHLERETH,Panae NOOMUNA,Pei GAO. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 810-815.
[10] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 344-355.
[11] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[12] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 426-434.
[13] Ren YAN,Lu LAI,Zi-Qiang XU,Feng-Lei JIANG,Yi LIU. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2377-2387.
[14] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2013-2021.
[15] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.