Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (3): 787-792    DOI: 10.3866/PKU.WHXB201512183
ARTICLE     
Epitaxial Graphene on Sapphire Substrate by Chemical Vapor Deposition
Qing-Bin LIU,Cui YU,Ze-Zhao HE,Jing-Jing WANG,Jia LI,Wei-Li LU,Zhi-Hong FENG*()
Download: HTML     PDF(2472KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Epitaxial graphene by chemical vapor deposition (CVD) is one of the main methods to fabricate high-quality wafer-scale graphene materials. However, CVD-grown graphene on metal substrates has some disadvantages, such as the need for a transfer process and carbon atoms dissolved into the metal substrate. In this work, we evaluate sapphire substrates to overcome those disadvantages. The morphology and crystal quality of the samples grown at different temperatures were characterized by atomic force microscopy (AFM), optical microscopy (OM), Raman spectroscopy, and a Hall measurement system. To ease the etching process of carbon atoms to the substrate, we adopt a very low carbon concentration of 0.01%. AFM and Raman results show that the surface morphologies of samples grown at lower temperatures were smoother, whereas the quality of samples grown at higher temperatures was better. The sapphire substrate was etched in an H2 environment, while it was not etched only by carbon source without H2 environment. Epitaxial graphene with flat surface morphology and good crystal quality was prepared on a c-plane sapphire substrate (diameter: 50 mm) at a growth temperature of 1200 ℃. The carrier mobility is above 1000 cm2·V-1·s-1 at room temperature.



Key wordsGraphene      Sapphire      Chemical vapor deposition      Growth temperature      Etching mechanism     
Received: 28 September 2015      Published: 18 December 2015
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(61306006)
Corresponding Authors: Zhi-Hong FENG     E-mail: ga917vv@163.com
Cite this article:

Qing-Bin LIU,Cui YU,Ze-Zhao HE,Jing-Jing WANG,Jia LI,Wei-Li LU,Zhi-Hong FENG. Epitaxial Graphene on Sapphire Substrate by Chemical Vapor Deposition. Acta Phys. -Chim. Sin., 2016, 32(3): 787-792.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512183     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I3/787

Fig 1 Flow chart of graphene growth
Fig 2 AFM images of samples at different growth temperatures
Fig 3 (a) Raman spectra of samples at different growth temperatures; (b) Lorentzian fit of 2D-peak of samples under 1200-1400 ℃; (c) ratio of ID/IG and I2D/IG of samples at different growth temperatuers; (d) result of full width at half maximum of 2D peak (2D-FWHM)
Fig 4 AFM and OM characterization of samples
Fig 5 (a) Optic microscope photograph of graphene on a sapphire wafer with diameter of 50 mm; (b) Hall result of samples with B of 5T at different growth temperatures; (c) Raman-mapping of the ratio of ID/IG of the sample growth; (d) Mapping of the sheet resistance of the sample growth
1 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306 (5696), 666.
2 Geim A. K. ; Novoselov K. S. Nat. Mater 2007, 6, 183.
3 Li X. S. ; Cai W.W. ; An J. ; Kim S. ; Nah J. ; Yang D. X. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; Banerjee S. K. ; Colombo L. ; Ruoff R. S. Science 2009, 324 (5932), 1312.
4 Bae S. ; Kim H. ; Lee Y. B. ; Xu X. F. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. ; I I. ; Kim Y. J. ; Kim K. S. ; Özyilmaz B. ; Ahn J. H. ; Hong B. H. ; Iijima S. Nat. Nanotechnol 2010, 5, 574.
5 Li X. S. ; Cai W.W. ; Colombo L. ; Ruoff R. S. Nano Lett 2009, 9 (12), 4268.
6 Bi H. ; Huang F. Q. ; Zhao W. ; Lü X. J. ; Chen J. ; Lin T. Q. ; Wan D. Y. ; Xie X. M. ; Jiang M. H. Carbon 2012, 50 (8), 2703.
7 Hwang J. ; Shields V. B. ; Thomas C. I. ; Shivaraman S. ; Hao D. ; Kim M. ; Woll A. R. ; Kim M. ; Spencer M. G. J. Cryst. Grow 2010, 312 (21), 3219.
8 Maeda F. ; Hibino H. Jpn. J. Appl. Phys 2010, 49 (4), 04D.
9 Fanton M. A. ; Robinson J. A. ; Puls C. ; Liu Y. ; Hollander M.J. ; Weiland B. E. ; LaBella M. ; Trumbull K. ; Kasarda R. ; Howsare C. ; Stitt J. ; Snyder D. W. ACS Nano 2011, 5 (10), 8062.
10 Hwang J. ; Kim M. ; Campbell D. ; Alsalman H. A. ; Kwak J.Y. ; Shivaraman S. ; Woll A. R. ; Singh A. K. ; Hennig R. G. ; Gorantla S. ; Rümmeli M. H. ; Spencer M. G. ACS Nano 2013, 7 (1), 385.
11 Robinson J. A. ; Wetherington M. ; Tedesco J. L. ; Campbell P.M. ; Weng X. ; Stitt J. ; Fanton M. A. ; Frantz E. ; Snyder D. ; VanMil B. L. ; Jernigan G. G. ; Myers-Ward R. L. ; Eddy C.R. ; J r. ; Gaskill D. K. Nano Lett 2009, 9 (8), 2873.
12 Wang G. ; Zhang M. ; Zhu Y. ; Ding G. Q. ; Jing D. ; Guo Q.L. ; Liu S. ; Xie X. M. ; Chu P. K. ; Di Z. F. ; Wang X. Sci. Rep. -UK 2013, 3, 2465.
13 Srivastava N. ; He G.W. ; Feenstra R. M. ; Fisher P. J. Phys. Rev. B 2010, 82, 235406.
14 Wang Y. Y. ; Ni Z. H. ; Shen Z. X. ; Wang H. M. ; Wu Y. H. Appl. Phys. Lett 2008, 92 (4), 043121.
15 Canc L. G. ; Takai K. ; Enoki T. ; Endo M. ; Kim Y. A. ; Mizusaki H. ; Jorio A. ; Coelho L. N. ; Magalhaes-Paniago R. ; Pimenta M. A. Appl. Phys. Lett 2006, 88 (16), 163106.
16 Wang S. ; Lara F. D. S. ; Wurstbauer U. ; Wang L. ; Pfeiffer L.N. ; Hone J. ; Garcia J. M. ; Pinczuk A. Solid State Commun 2014, 189, 15.
[1] Qi HU,Chuanhong JIN. In Situ TEM Observation of Radiolysis and Condensation of Water via Graphene Liquid Cell[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 101-107.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.