Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (3): 737-744    DOI: 10.3866/PKU.WHXB201512184
ARTICLE     
Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite
Li-Fang HU1,2,Jie HE1,*(),Yuan LIU1,Yun-Lei ZHAO1,Kai CHEN1
1 School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui Province P. R. China
2 School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui Province P. R. China
Download: HTML     PDF(3316KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A novel composite material TiO2-HNbMoO6 was prepared by an intercalation-pillar route. The phase and its microstructure, skeleton feature, spectral-response characteristics, and the interaction between interlayer species and nanosheets were characterized using powder X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and H2 temperature-programmed reduction (H2-TPR). The specific surface areas of the samples were measured by N2 adsorption-desorption isotherms. The synergistic effect between the host and the guest of the composites was evaluated by the degradation of methylene blue (MB) dye under simulated sunlight. The results, such as the increase of the d-spacing, the absence of TiO2 crystalline phase, and the change of the Nb―O bond in the main body and the Ti―O bond in TiO2 before and after composition, demonstrate that TiO2 is uniformly dispersed in the interlayer of HNbMoO6, indicating the interaction between the host laminates and the guest titanium oxide species. The specific surface area of the composite was four times that of its host material, the narrowing band gap, the better adsorption ability, and the superior photocatalytic activity of TiO2-HNbMoO6 were because of the synergistic effect between the host and the guest.



Key wordsHNbMoO6      TiO2      Composite structure      Photocatalysis      Synergistic effect     
Received: 09 November 2015      Published: 18 December 2015
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(21271008);National Training Programs of Innovation and Entrepreneurship for Undergraduates, China(AH201410361062)
Corresponding Authors: Jie HE     E-mail: jhe@aust.edu.cn
Cite this article:

Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite. Acta Physico-Chimica Sinca, 2016, 32(3): 737-744.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512184     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I3/737

Fig 1 Schematic of LiNbMoO6 structure
Fig 2 XRD pattern of the as-prepared samples
Fig 3 HRTEM images of HNbMoO6 (a, c) and TiO2-HNbMoO6 (b, d)
Fig 4 Energy dispersive spectrum (EDS) of HNbMoO6 (a) and TiO2-HNbMoO6(b)
Fig 5 N2 adsorption-desorption isotherms of as-prepared samples
Assignmentν/cm-1 Ref.
HNbMoO6 TiO2-HNbMoO6TiO2 |Δν|
ν(Mo=O) 970.9 969.4 1.5 8
ν(Nb=O) 904.5 904.4 0.1 9
ν(Mo―O) 818.5 817.9 0.8 10, 11
ν(Ti―O) 631.7 641.6 9.9 12
ν(Nb―O) 605.8, 456.7 598.8, 456.7 6.2, 0 13, 14
δ(M―O) (M = Mo, Nb) 370.9, 305.2, 212.4, 147.9 372.8, 306.4, 212.4, 152.1 1.9, 1.2, 0, 4.2 9, 11, 15, 16, 17, 18, 19
Table 1 Position (ν/cm-1) and attribution of the vibration peaks of the Raman spectra
Fig 6 LRS of the as-prepared samples
Fig 7 H2-TPR curves of the as-prepared samples
Fig 8 XPS spectra of HNbMoO6 (a) and TiO2-HNbMoO6 (b)
Sample Binding energy/eV
Nb 3d Mo 3dTi 2p O 1s
HNbMoO6 206.82209.59 232.32 235.51530.16 532.08 533.35
TiO2-HNbMoO6 206.95209.7 232.37 235.51 458.73 464.46 530.00 532.08
Table 2 Binding energies obtained from XPS spectra (Fig.8)
Fig 9 UV-Vis DRS of the as-prepared samples
Fig 10 Photocatalytic degradation curves of MB over the as-prepared samples
Fig 11 Transport model of the photoexcited carriers in TiO2-HNbMoO6
1 Hou W. H. ; Yan Q. J. ; Peng B. C. ; Fu X. C. Acta Phys. -Chim. Sin. 1994, 10, 289.
1 侯文华; 颜其洁; 彭秉成; 傅献彩.. 物理化学学报, 1994, 10, 289.
2 He J. ; Li Q. J. ; Tang Y. ; Yang P. ; Li A. ; Li R. ; Li H. Z. Appl. Catal. A-Gen. 2012, 443- 444,145.
3 He J. ; Hu L. F. ; Tang Y. ; Li H. Z. ; Yang P. ; Li Z. RSC Adv. 2014, 4, 22334.
4 Wu J. H. ; Uchida S. ; Fujishiro Y. ; Yin S. ; Sato T. J. Photochem. Photobiol. A 1999, 128, 129.
5 Wu J. H. ; Uchida S. ; Fujishiro Y. ; Yin S. ; Sato T. Int. J. Inorg. Mater. 1999, 1, 253.
6 Wu J. H. ; Yin S. ; Lin Y. ; Lin J. M. ; Huang M. L. ; Sato T. J. Mater. Sci. 2001, 36, 3055.
7 Wang L. L. ; Wu J. H. ; Li T. H. ; Cheng Y. G. ; Huang M. L. Lin. J. M. J. Porous Mat. 2005, 12, 23.
8 Botella P. ; Solsona B. ; Nieto J. M. L. ; Concepción P. ; Jordá ; J. L.; Doménech-Carbó M. T. Catal. Today 2010, 158, 162.
9 Murayama T. ; Chen J. ; Hirata J. ; Matsumoto K. ; Ueda W. Catal. Sci. Technol. 2014, 4, 4250.
10 Zhang H. ; Liu X. J. ; Wang R. L. ; Mi R. ; Li S. M. ; Cui Y.H. ; Deng Y. F. ; Mei J. ; Liu H. J. Power Sources 2015, 274, 1063.
11 Alemán-Vázquez L. O. ; Hernández-Pérez F. ; Cano-Domínguez J. L. ; Rodríguez-Hernández A. ; García-Gutiérrez J. L. Fuel 2014, 117, 463.
12 Tian H. ; Wang H. X. ; Shi W. M. ; Xu Y. Acta Phys. -Chim. Sin. 2014, 30, 1543.
12 田红; 王会香; 史卫梅; 徐耀.. 物理化学学报, 2014, 30, 1543.
13 Kioka K. ; Honma T. ; Komatsu T. Opt. Mater. 2011, 33, 1203.
14 Hsu S. M. ; Wu J. J. ; Yung S.W. ; Chin T. S. ; Zhang T. ; Lee Y. M. ; Chu C. M. ; Ding J. Y. J. Non-Cryst. Solids 2012, 358, 14.
15 Idrees F. ; Cao C. ; Butt F. K. ; Tahir M. ; Shakir I. ; Rizwan M. ; Aslam I. ; Tanveer M. ; Ali Z. Int. J. Hydrog. Energy 2014, 39, 13174.
16 Li W. ; Meitzner G. D. ; Borry R.W. ; Iglesia E. J. Catal. 2000, 191, 373.
17 Huang H. ; Wang C. ; Huang J. ; Wang X.M. ; Du Y. K. ; Yang P. Nanoscale 2014, 6, 7274.
18 Usha N. ; Sivakumar R. ; Sanjeeviraja C. Mat. Sci. Semicon. Proc. 2015, 30, 31.
19 Ou J. Z. ; Campbell J. L. ; Yao D. ; Wlodarski W. ; Kalantarzadeh K. J. Phys. Chem. C 2011, 115, 10757.
20 de Paiva J. B. ; ; Jr.; Monteiro W. R. ; Zacharias M. A. ; Rodrigues J. A. J. ; Cortez G. G. Braz. J. Chem. Eng. 2006, 4, 517.
21 Botto I. L. ; Cabello C. I. ; Thomas H. J. Mater. Chem. Phys. 1997, 47, 37.
22 Guan J. Q. ; Xu C. ; Wang Z. Q. ; Yang Y. ; L iu Bo. Catal. Lett. 2008, 124, 428.
23 Xu B. L. ; Fan Y. N. ; Liu L. ; Lin M. ; Chen Y. Science in China (Series B) 2002, 32, 235.
23 许波连; 范以宁; 刘浏; 林明; 陈懿.. 中国科学(B辑), 2002, 32, 235.
24 Fan F. Q. ; Meng M. ; Tian Y. ; Zheng L. R. ; Zhang J. ; Hu T.D. Acta Phys.-Chim. Sin. 2015, 31, 1761.
24 范丰奇; 孟明; 田野; 郑黎荣; 张静; 胡天斗. 物理化学学报中国科学(B辑), 2015, 31, 1761.
25 Sanderson R. T. J. Chem. Educ. 1988, 65, 112.
26 Beccaria A. M. ; Poggi G. ; Castello G. Brit. Corros. J. 1995, 30, 283.
27 Wang Q. Q. ; Lin B. Z. ; Xu B. H. ; Li X. L. ; Chen Z. J. ; Pian X. T. Microporous Mesoporous Mat. 2010, 130, 344.
28 Xu Y. ; Schoonen M. A. A. Am. Mineral. 2000, 85, 543.
[1] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[3] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[4] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[5] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[6] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[7] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 602-610.
[8] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[9] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[10] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2523-2531.
[11] Hai LAN,Xi XIAO,Shan-Liang YUAN,Biao ZHANG,Gui-Lin ZHOU,Yi JIANG. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2301-2309.
[12] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[13] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2042-2051.
[14] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[15] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.