Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (3): 717-722    DOI: 10.3866/PKU.WHXB201512301
ARTICLE     
Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method
Jian-Wen KOU1,Zhao WANG1,Li-Ying BAO1,2,*(),Yue-Feng SU1,2,*(),Yu HU1,Lai CHEN1,Shao-Yu XU3,Fen CHEN3,Ren-Jie CHEN1,2,Feng-Chun SUN2,Feng WU1,2
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
2 Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, P. R. China
3 China North Vehicle Research Institute, Beijing 100072, P. R. China
Download: HTML     PDF(1962KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We synthesized layered lithium-rich cathode materials by a novel ethanol-based one-step oxalate coprecipitation method. Using this method, all the elements including lithium could be coprecipitated during the coprecipitation reaction process to realize a homogeneous mixture of lithium and transition metal elements. In addition, compared with the conventional ammonium oxalate coprecipitation method, the precursor preheating process was eliminated, which should decrease reaction time and cost. X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements were used to investigate the differences in the crystal structure, morphology and electrochemical performance of samples synthesized using the above two methods. Compared with the samples synthesized by the conventional ammonium oxalate coprecipitation method, samples prepared by our novel one-step oxalate coprecipitation method exhibit higher crystallinity with larger interlayer spacing, and smaller, more homogeneous particles. Such crystal structure and morphology endow the samples prepared by the oxalate coprecipitation method with better discharge capacity, cycle performance and rate performance than those synthesized by the conventional method. The simple, efficient coprecipitation method developed here may provide a new approach to fabricate layered materials for highperformance lithium-ion batteries.



Key wordsLithium-ion battery      Cathode material      Li2MnO3      Ethanol      Oxalate coprecipitation method      Electrochemical performance     
Received: 10 November 2015      Published: 30 December 2015
MSC2000:  O646  
Fund:  the National Key Basic Research Program of China((973)(2015CB251100));National Natural Science Foundation of China(51472032, 51202083);Program for New Century Excellent Talents in University, China(NCET-13-0044);Special Fund of Beijing CoConstruction Project, China(20150939013);BIT Scientific and Technological Innovation Project, China(2013CX01003)
Corresponding Authors: Li-Ying BAO,Yue-Feng SU     E-mail: baoliying@bit.edu.cn;suyuefeng@bit.edu.cn
Cite this article:

Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method. Acta Physico-Chimica Sinca, 2016, 32(3): 717-722.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201512301     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I3/717

 
 
 
 
 
Sample Rs/Ω Rct/Ω
A 148.6 963.3
B 170.0 517.8
 
1 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334 (18), 928.
2 Chen L. ; Su Y. F. ; Chen S. ; Li N. ; Bao L.Y. ; Li W. K. ; Wang Z. ; Wang M. ; Wu F. Adv. Mater 2014, 26 (39), 6756.
3 Lu Z. ; Beaulieu L. ; Donaberger R. ; Thomas C. ; Dahn J.J. Electrochem. Soc. 2002, 149 (6), A778.
4 Lu Z. ; MacNeil D. ; Dahn J. Electrochem. Solid ST. 2001, 4 (6), A191.
5 Thackeray M. M. ; Kang S. H. ; Johnson C. S. ; Vaughey J. T. ; Benedek R. ; Hackney S. J. Mater. Chem. 2007, 17 (30), 3112.
6 Wu F. ; Li N. ; Su Y. F. ; Shou H. F. ; Bao L. Y. ; Yang W. ; Zhang L. J. ; An R. ; Chen S. Adv. Mater. 2013, 25 (27), 3722.
7 Xu B. ; Fell C. R. ; Chi M. ; Meng Y. S. Energ. Environ. Sci 2011, 4 (6), 2223.
8 Lee M. H. ; Kang Y. J. ; Myung S. T. ; Sun Y. K. Electrochim. Acta 2004, 50, 939.
9 Van Bommel A. ; Dahn J. Chem. Mater. 2009, 21 (8), 1500.
10 Liang L. ; Du K. ; Peng Z. ; Cao Y. ; Duan J. ; Jiang J. ; Hu G. Electrochim. Acta 2014, 130, 82.
11 Kim H. J. ; Jung H. G. ; Scrosati B. ; Sun Y. K. J. Power Sources 2012, 203, 115.
12 Lim J. H. ; Bang H. ; Lee K. S. ; Amine K. ; Sun Y. K.J. Power Sources 2009, 189, 571.
13 Zhou F. ; Zhao X. ; van Bommel A. ; Rowe A.W. ; Dahn J. Chem. Mater. 2009, 22 (3), 1015.
14 Wang D. ; Belharouak I. ; Koenig G. M. ; Zhou G. ; Amine K.J. Mater. Chem. 2011, 21 (25), 9290.
15 Mater. Chem. Powder Technol 2010, 198 (3), 373.
16 Lee D. K. ; Park S. H. ; Amine K. ; Bang H. ; Parakash J. ; Sun Y. K. J. Power Sources 2006, 162, 1346.
17 Zhang S. ; Deng C. ; Yang S. ; Niu H. J. Alloy. Compd. 2009, 484 (1), 519.
18 Park S. H. ; Kang S. H. ; Belharouak I. ; Sun Y. ; Amine K.J. Power Sources 2008, 177, 177.
19 Zheng J. ; Gu M. ; Genc A. ; Xiao J. ; Xu P. ; Chen X. ; Zhu Z. ; Zhao W. ; Pullan L. ; Wang C. Nano Lett. 2014, 14 (5), 2628.
20 Wu F. ; Lu H. Q. ; Su Y. F. ; Li N. ; Bao L. Y. ; Chen S.J. Appl. Electrochem. 2010, 40 (4), 783.
21 Thackeray M. M. ; Johnson C. S. ; Vaughey J. T. ; Li N. ; Hackney S. A. J. Mater. Chem. 2005, 15 (23), 2257.
22 Kim J. H. ; Park C. ; Sun Y. K. Solid State Ionics 2003, 164 (1), 43.
23 Ohzuku T. ; Ueda A. ; Nagayama M. ; Iwakoshi Y. ; Komori H. Electrochim. Acta 1993, 38, 1159.
24 Bruce P. G. ; Scrosati B. ; Tarascon J. M. Angew. Chem. Int. Edit. 2008, 47 (16), 2930.
25 Yabuuchi N. ; Yoshii K. ; Myung S. T. ; Nakai I. ; Komaba S.J. Am. Chem. Soc. 2011, 133 (12), 4404.
26 Johnson C. S. ; Li N. ; Lefief C. ; Vaughey J. T. ; Thackeray M. M. Chem. Mater. 2008, 20 (19), 6095.
27 Gu M. ; Genc A. ; Belharouak I. ; Wang D. ; Amine K. ; Thevuthasan S. ; Baer D. R. ; Zhang J. G. ; Browning N. D. ; Liu J. Chem. Mater. 2013, 25 (11), 2319.
28 Arunkumar T. ; Wu Y. ; Manthiram A. Chem. Mater. 2007, 19 (12), 3067.
29 Kou J.W. ; Chen L. ; Su Y. F. ; Bao L. Y. ; Wang J. ; Li N. ; Li W. K. ; Wang M. ; Chen S. ; Wu F. ACS Appl. Mater. Inter. 2015, 7 (32), 19710.
30 Chen L. ; Chen S. ; Hu D. Z. ; Su Y. F. ; Li W. K. ; Wang Z. ; Bao L. Y. ; Wu F. Acta Phys. -Chim. Sin. 2014, 30 (3), 467.
30 陈来; 陈实; 胡道中; 苏岳锋; 李维康; 王昭; 包丽颖; 吴锋. 物理化学学报, 2014, 30 (3), 467.
31 Yu H. ; Wang Y. ; Asakura D. ; Hosono E. ; Zhang T. ; Zhou H. S. Yu H., Wang Y., Asakura D., Hosono E., Zhang T., Zhou H. S. 2012, 2 (23), 8797.
32 Liu X. ; Li H. ; Yoo E. ; Ishida M. ; Zhou H. S. Electrochim. Acta 2012, 83, 253.
[1] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 247-255.
[2] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[3] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1865-1874.
[4] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[8] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[9] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[10] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[11] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[12] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.
[13] Ming-Hui HUANG,Bi-Yao JIN,Lian-Hua ZHAO,Shi-Gang SUN. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 563-572.
[14] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[15] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.