Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (4): 969-974    DOI: 10.3866/PKU.WHXB201601061
ARTICLE     
Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries
Li-Li CAI1,Yue-Hua WEN2,*(),Jie CHENG2,Gao-Ping CAO2,Yu-Sheng YANG1,2
1 Faculty of Science, Beijing University of Chemical Technology, Beijing 110159, P. R. China
2 Research Institute of Chemical Defence, Beijing 100191, P. R. China
Download: HTML     PDF(1598KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Using the tetrachloro-p-benzoquinone (TCQ) monomer, poly(benzoquinonyl sulfide) (PBQS) was synthesized by a simple polycondensation reaction. The influence of the molar ratio of S to Na2S on the electrochemical performance of a PBQS anode was assessed by changing the amount of S added. The results showed that the electrochemical performance of PBQS strongly depended on the molar ratio of S to Na2S. When the molar ratio of S to Na2S was 0.4, two Cl were replaced by S, and PBQS with a stable structure was obtained. The discharge capacity of PBQS exceeded 140 mAh·g-1. At the same time, PBQS displayed satisfactory rate capability and excellent cyclability. Conversely, when the molar ratio of S to Na2S was decreased to 0.25, Cl was not substituted completely and the polymerization degree was low. Upon increasing the molar ratio of S to Na2S to 0.7, an unstable S-S bond may form in the polymer. The above two factors degraded the electrode performance of these materials.



Key wordsAqueous lithium-ion battery      Polycondensation      Poly(benzoquinonyl sulfide)      Mole ratio of S to Na2S      Electrochemical performance     
Received: 25 September 2015      Published: 06 January 2016
MSC2000:  O646  
Fund:  the Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Material
Corresponding Authors: Yue-Hua WEN     E-mail: wen_yuehua@126.com
Cite this article:

Li-Li CAI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries. Acta Physico-Chimica Sinca, 2016, 32(4): 969-974.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201601061     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I4/969

Fig 1 Cyclic voltammogram of the first five scanning withTCQ (A) and PBQS (B) electrodes prepared by differentmole ratios of S to Na2S
Fig 2 Typical charge and discharge curves of PBQSelectrodes prepared by different mole ratios of S to Na2S atthe current density of 200 mA?g-1
Fig 3 Specific capacity and coulomb efficiency vs cycle number of PBQS electrodes
Fig 4 Galvanostatic cycling of PBQS prepared by different mole ratios of S and Na2S
Fig 5 FTIR spectra for (a) PBQS-0.25, (b) PBQS-0.4, (c) PBQS-0.7, and (d) TCQ
w(C)/%w(S)/%w(N)/%m(C)/m(S)
PBQS-0.2533.7926.741.381.26
PBQS-0.432.21290.5931.11
PBQS-0.725.1624.490.5471.02
Table 1 Element analysis of PBQS prepared by different mole ratios of S to Na2S
Fig 6 Synthetic route of PBQS
1 Li W. ; Mckinnon W. R. ; Dahn J. R. J. Electrochem. Soc. 1994, 141, 2310.
2 Li W. ; Dahn J. R. ; Wainwright D. S. Science 1994, 264, 1115.
3 Wang H. B. ; Huang K. L. ; Zeng Y. Q. ; Yang S. ; Chen L. Q. Electrochim. Acta 2007, 52, 3280.
4 Luo J. Y. ; Cui W. J. ; Ping H. ; Xia Y. Y. Nature Chem. 2010, 2, 760.
5 West R. ; Powell D. L. J. Am. Chem. Soc. 1963, 85, 2577.
6 Tang Z. Y. ; Xu G. X. Acta Phys. -Chim. Sin. 2003, 19, 307.
6 唐致远; 徐国祥.. 物理化学学报, 2003, 19, 307.
7 Xu G. X. ; Qi L. ; Wen L. ; Liu G. Q. ; Ci Y. X. Acta Polymerica Sinica 2006, (6), 795.
7 徐国祥; 其鲁; 闻雷; 刘国强; 慈云翔. 高分子学报, 2006, (6), 795.
8 Liu K. ; Zheng J. M. ; Zhong G. M. ; Yang Y. Electrochemistry 2009, 15, 245.
8 刘凯; 郑建明; 钟贵明; 杨勇.. 电化学, 2009, 15, 245.
9 Song Z. P. ; Zhan H. ; Zhou Y. H. Chem. Commun 2009, (4), 448.
10 Gall T. L. ; Reiman K. H. ; Grossel M. C. ; Owen J. R. J. Power Sources 2003, 119, 316.
11 Jeftic L. ; Manning G. J. Electroanal. Chem. 1970, 26, 195.
12 Boschi T. ; Pappa R. ; Pistoia G. ; Tocci M. J. Electroanal. Chem. 1984, 176, 235.
13 Chen H. ; Armand M. ; Demailly G. ; Dolhem F. ; Poizot P. ; Tarascon J. M. ChemSusChem 2008, 1, 348.
14 Dong Q. N. Infrared Spectroscopy, 1st ed.; Petroleum Chemical Industry Press: Beijing 1977, 181- 197.
14 董庆年. 红外光谱法.第一版.北京:石油化学工业出版社, 1977, 181- 197.
[1] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[2] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[3] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1593-1603.
[4] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 717-722.
[5] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1437-1451.
[6] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1527-1534.
[7] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1521-1526.
[8] SU Shuo-Jian, NULI Yan-Na, FEILURE Tuerxun, YANG Jun, WANG Jiu-Lin. Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 111-120.
[9] FEILURE Tuerxun, ZULIPIYA Shadike, NULI Yan-Na, YANG Jun, WANG Jiu-Lin. Pyrazolyl Magnesium Halide/Tetrahydrofuran Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1634-1640.
[10] ZHOU Ying, WANG Dao-Long, XIAO Nan, HOU Yu-Chen, QIU Jie-Shan. Influence of Heat Treatment Temperature on the Structure and Electrochemical Performance of Asphaltene-Based B/N Co-Doped Porous Carbons[J]. Acta Physico-Chimica Sinca, 2014, 30(6): 1127-1133.
[11] LI Li, HU Zhong-Ai, YANG Yu-Ying, WU Hong-Ying, CUI Lu-Juan. Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance[J]. Acta Physico-Chimica Sinca, 2014, 30(5): 899-907.
[12] CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)[J]. Acta Physico-Chimica Sinca, 2014, 30(3): 467-475.
[13] BIAN Pei-Wen, NULI Yan-Na, Zainapuguli, YANG Jun, WANG Jiu-Lin. Benzenethiolate-Based Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Physico-Chimica Sinca, 2014, 30(2): 311-317.
[14] CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2014, 30(12): 2256-2262.
[15] HU Zhi, HUANG Xiao-Wei, CHEN Yang-Hui. Synthesis and Properties of SmBaCo2O5+δ Cathode Material via EDTA-Glycine Process[J]. Acta Physico-Chimica Sinca, 2013, 29(12): 2585-2591.