Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (4): 950-960    DOI: 10.3866/PKU.WHXB201601191
ARTICLE     
First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces
Jian-Hong LIU1,Cun-Qin Lü1,2,Chun JIN1,*(),Gui-Chang WANG3,*()
1 College of Chemistry and Enviromental Engineering, Shanxi Datong University, Datong 037009, Shanxi Province, P. R. China
2 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
3 Department of Chemistry and the Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, P. R. China
Download: HTML     PDF(5843KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Density functional theory calculations have been performed to investigate methanol oxidation to formic acid on PtAu(111) and Pt(111) surfaces with and without CO in alkaline media. The calculated results show that the pre-adsorbed CO species promotes almost every step involved in the oxidation of methanol on PtAu(111) and Pt(111) surfaces, which is similar to that observed on a Au(111) surface. These findings may be attributed to the relatively high stability and strong basicity of the OH species induced by the adsorption of CO, and the enhanced ability to strip the H atoms.



Key wordsMethanol oxidation      M(111) (M = PtAu, Pt)      Alkaline medium      CO promotion effect      Density functional theory calculation     
Received: 28 September 2015      Published: 19 January 2016
MSC2000:  O641  
  O647  
Fund:  the National Natural Science Foundation of China(21503122, 21346002);Natural Science Foundation of Shanxi forYouths, China(2014021016-2);Scientific and Technological Programs in Shanxi Province, China(2015031017);Foundation of Key Laboratoryof Advanced Energy Materials Chemistry (Ministry of Education), China
Corresponding Authors: Chun JIN,Gui-Chang WANG     E-mail: jinchun0828@126.com;wangguichang@nankai.edu.cn
Cite this article:

Jian-Hong LIU,Cun-Qin Lü,Chun JIN,Gui-Chang WANG. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces. Acta Physico-Chimica Sinca, 2016, 32(4): 950-960.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201601191     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I4/950

 
 
M1M2M3M4
EaΔHEaΔHEaΔHEaΔH
OH 0.10 -0.01 0.99 -0.42 0.85 -1.64 0 -0.25
CO/OH 0.20 -0.11 0.64 -0.89 0.38 -1.69 0 -0.54
 
 
Adsorption site Binding energy/eV Bader charge/e
OH top -2.43 -0.37
br -3.05(fcc) -0.43
fcc -3.05 -0.42
CO top -1.67 -0.12
br -2.04 -0.24
fcc -2.11 -0.31
OH+CO OH(top)+CO(fcc) -2.39a -0.36/-0.29
OH(fcc)+CO(fcc) -2.89a -0.42/-0.35
OH(fcc)+CO(br) -2.92a -0.43/-0.26
OH(fcc)+CO(top) -3.03a -0.43/-0.18
 
 
 
 
Adsorption site Binding energy/eV Bader charge/e
OH top -2.43 —0.38
br —2.46(fcc) —0.40
fcc —2.44 —0.47
CO top — 1.59 —0.18
br — 1.67 —0.21
fcc — 1.76 —0.27
OH+CO OH(top)+CO(fcc) —2.45a, b —0.36/—0.31
OH(fcc)+CO(fcc) -2.26 a —0.45/—0.30
OH(fcc)+CO(br) —2.21 a —0.45/—0.30
OH(fcc)+CO(top) —2.25 a —0.47/—0.15
aThe adsorption energy of OH with CO co-adsorbed on the Pt(111) surface.bOH moves to fcc site from initial top site.
 
 
 
 
M1M2M3M4
EaΔHEaΔHEaΔHEaΔH
OH 0 -0.30 0.53 -0.98 0.41 -1.70 0.20 -0.66
CO/OH 0 -0.32 0.15 -1.05 0.10 -1.76 0.20 -0.70
 
 
1 Zhang K. ; Yang W. ; Ma C. ; Wang Y. ; Sun C.W. ; Chen Y. J. ; Duchesne P. ; Zhou J. G. ; Wang J. ; Hu Y. F. ; Banis M. N. ; Zhang P. ; Li F. ; Li J. Q. ; Chen L. Q. NPG Asia Mater 2015, 7, e153.
2 Sun S. ; Zhang G. ; Gauquelin N. ; Chen N. ; Zhou J. ; Yang S. ; Chen W. ; Meng X. ; Geng D. ; Banis M. N. ; Li R. ; Ye S. ; Knights S. ; Botton G. A. ; Sham T. ; Sun X. Sci. Rep. 2013, 3, 1775.
3 Ganesan R. ; Lee J. S. Angew. Chem. Int. Edit. 2005, 44, 6557.
4 Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14. doi: 10.1016/S0022-0728(98)00197-1
5 Roberts J. L. ; ; Jr.; Sawyer D. T. Electrochim. Acta 1965, 10, 989.
6 Rodriguez P. ; Kwon Y. ; Koper M. T. M. Nat. Chem. 2012, 4, 177.
7 Zope B. N. ; Hibbits D. D. ; Neurock M. ; Davis R. J. Science 2010, 330, 74.
8 Ketchie W. C. ; Fang Y. L. ; Wong M. S. ; Murayama M. ; Davis R. J. J. Catal. 2007, 250, 94.
9 Burke L. D. ; Nugent P. F. Gold Bull. 1998, 31, 39.
10 Kita H. ; Nakajima H. ; Hayashi K. J. Electroanal. Chem. 1985, 190, 141.
11 Zhang T. F. ; Liu Z. P. ; Driver S. M. ; Pratt S. J. ; Jenkins S. J. ; King D. A. Phys. Rev. Lett. 2005, 95, 266102.
12 Gan L. Y. ; Zhao Y. J. J. Chem. Phys. 2010, 133, 094703.
13 Liu Y. H. ; Wei L. ; Hu Y. Z. ; Huang X. Y. ; Wang J. Q. ; Li J. Q. ; Hu X. L. ; Zhuang N. F. J. Alloy. Compd. 2016, 656, 452.
14 Shubina T. E. ; Hartnig C. ; Koper M. T. M. Phys. Chem. Chem. Phys. 2004, 6, 4215.
15 Wang L. ; He C. Z. ; Zhang W. H. ; Li Z. Y. ; Yang J. L. J. Phys. Chem. C 2014, 118, 17511.
16 Lv C. Q. ; Liu J. H. ; Wang H. ; Wang G. C. Catal. Commun. 2015, 60, 60.
17 Yuan, D.W.; Gong, X. G.;Wu, R. Q. J. Chem. Phys. 2008, 128, 064706. doi: 10.1063/1.2835545
18 Zhong W. H. ; Liu Y. X. ; Zhang D. J. J. Phys. Chem. C 2012, 116, 2994.
19 Montero M. A. ; Gennero de Chialvo M. R. ; Chialvo A. C. Int. J. Hydrog. Energy 2011, 36, 3811.
20 Ren H. ; Humbert M. P. ; Menning C. A. ; Chen J. G. ; Shu Y. Y. ; Singh U. G. ; Cheng W. C. Appl. Catal. A 2010, 375, 303.
21 Qiu C. C. ; Guo Y. G. ; Zhang J. T. ; Ma H. Y. ; Cai Y. Q. Mater. Chem. Phys. 2011, 127, 484.
22 Xu J. B. ; Zhao T. S. ; Yang W.W. ; Shen S. Y. Int. J. Hydrog. Energy 2010, 35, 8699.
23 Yang L. ; Chen J. H. ; Zhong X. X. ; Cui K. Z. ; Xu Y. ; Kuang Y. F. Colloids Surf. A 2007, 295, 21.
24 Kresse G. ; Hafner J. Phys. Rev. B 1994, 49, 14251.
25 Kresse G. ; Furthmüller J. Comp. Mater. Sci. 1996, 6, 15.
26 Perdew J. P. ; Chevary J. A. ; Vosko S. H. ; Jackson K. A. ; Pederson M. R. ; Singh D. J. ; Fiolhais C. Phys. Rev. B 1992, 46, 6671.
27 Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
28 Blöhl P. E. Phys. Rev. B 1994, 50, 17953.
29 Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13, 5188.
30 Henkelman G. ; Uberuaga B. P. ; Jónsson H. J. Chem. Phys. 2000, 113, 9901.
31 Kittel C. Introduction to Solid State Physics, 8th ed.;Wiley: New York 2004.
32 Hammer B. Surf. Sci. 2000, 459, 323.
33 Greeley J. ; Mavrikakis M. J. Am. Chem. Soc. 2004, 126, 3910.
34 Pacchioni G. ; Ricart J. M. ; Illas F. J. Am. Chem. Soc. 1994, 116, 10152.
35 Torres D. ; Lopez N. ; Illas F. ; Lambert R. M. Angew. Chem. Int. Edit. 2007, 46, 2055.
36 Zhao S. ; Ma X. D. ; Pang Q. ; Sun H.W. ; Wang G. C. Phys. Chem. Chem. Phys. 2014, 16, 5553.
[1] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[2] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[3] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.
[4] Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 242-248.
[5] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2264-2270.
[6] Zhao- min WAN,Xing WEI,Wei PENG,Zheng-Lei YIN,Li XIAO,Lin ZHUANG. On-Line Electrochemical Transmission Infrared Spectroscopic Study of Pb2+ Enhanced C―C Bond Breaking in the Ethanol Oxidation Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1467-1472.
[7] Zong-Yan ZHAO,Fan TIAN. Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2511-2517.
[8] GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2015, 31(11): 2117-2123.
[9] CAO Xiao-Xiao, SU Yan, ZHAO Ji-Jun, LIU Chang-Ling, ZHOU Pan-Wang. Stability and Raman Spectroscopy of Alkane Guest Molecules (CnHm, n≤6, m≤14) in 51262 and 51264 Water Cavities by Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1437-1446.
[10] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1267-1273.
[11] WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 708-714.
[12] WANG Chen, WEI Zi-Zhang, LÜ Yong-Kang, XING Bin, WANG Gui-Chang. Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces[J]. Acta Physico-Chimica Sinca, 2013, 29(04): 723-730.
[13] ZHOU Xin-Wen, GAN Ya-Li, SUN Shi-Gang. Studies of Oxidation Processes of Methanol on Hollow CoPt Nanospheres and In situ Electrochemical Fourier Transform Infrared Spectroscopy[J]. Acta Physico-Chimica Sinca, 2012, 28(09): 2071-2076.
[14] ZHUANG Shu-Xin, LIU Su-Qin, ZHANG Jin-Bao, TU Fei-Yue, HUANG Hong-Xia, HUANG Ke-Long, LI Yan-Hua. Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell[J]. Acta Physico-Chimica Sinca, 2012, 28(02): 355-360.
[15] TIAN Hui-Wen, LI Wei-Hua, WANG Da-Peng, HOU Bao-Rong. Adsorption Mechanism of Nicotinic Acid onto a Passive Iron Surface[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 137-145.