ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(4)>> 950-960     doi: 10.3866/PKU.WHXB201601191         中文摘要
First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces
LIU Jian-Hong1, Lü Cun-Qin1,2, JIN Chun1, WANG Gui-Chang3
1. College of Chemistry and Enviromental Engineering, Shanxi Datong University, Datong 037009, Shanxi Province, P. R. China;
2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China;
3. Department of Chemistry and the Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, P. R. China
Full text: PDF (5843KB) HTML Export: BibTeX | EndNote (RIS)

Density functional theory calculations have been performed to investigate methanol oxidation to formic acid on PtAu(111) and Pt(111) surfaces with and without CO in alkaline media. The calculated results show that the pre-adsorbed CO species promotes almost every step involved in the oxidation of methanol on PtAu(111) and Pt(111) surfaces, which is similar to that observed on a Au(111) surface. These findings may be attributed to the relatively high stability and strong basicity of the OH species induced by the adsorption of CO, and the enhanced ability to strip the H atoms.

Keywords: Methanol oxidation   M(111) (M = PtAu, Pt)   Alkaline medium   CO promotion effect   Density functional theory calculation  
Received: 2015-09-28 Accepted: 2016-01-18 Publication Date (Web): 2016-01-19
Corresponding Authors: JIN Chun, WANG Gui-Chang Email:;

Fund: The project was supported by the National Natural Science Foundation of China (21503122, 21346002), Natural Science Foundation of Shanxi for Youths, China (2014021016-2), Scientific and Technological Programs in Shanxi Province, China (2015031017), and Foundation of Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), China.

Cite this article: LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016,32 (4): 950-960.    doi: 10.3866/PKU.WHXB201601191

(1) Zhang, K.; Yang, W.; Ma, C.;Wang, Y.; Sun, C.W.; Chen, Y. J.; Duchesne, P.; Zhou, J. G.;Wang, J.; Hu, Y. F.; Banis, M. N.; Zhang, P.; Li, F.; Li, J. Q.; Chen, L. Q. NPG Asia Mater. 2015, 7, e153. doi: 10.1038/am.2014.122
(2) Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; Li, R.; Ye, S.; Knights, S.; Botton, G. A.; Sham, T.; Sun, X. Sci. Rep. 2013, 3, 1775. doi: 10.1038/srep01775
(3) Ganesan, R.; Lee, J. S. Angew. Chem. Int. Edit. 2005, 44, 6557. doi: 10.1002/anie.200501272
(4) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14. doi: 10.1016/S0022-0728(98)00197-1
(5) Roberts, J. L., Jr.; Sawyer, D. T. Electrochim. Acta 1965, 10, 989. doi: 10.1016/0013-4686(65)80011-1
(6) Rodriguez, P.; Kwon, Y.; Koper, M. T. M. Nat. Chem. 2012, 4, 177. doi: 10.1038/nchem.1221
(7) Zope, B. N.; Hibbits, D. D.; Neurock, M.; Davis, R. J. Science 2010, 330, 74. doi: 10.1126/science.1195055
(8) Ketchie, W. C.; Fang, Y. L.;Wong, M. S.; Murayama, M.; Davis, R. J. J. Catal. 2007, 250, 94. doi: 10.1016/j.jcat.2007.06.001
(9) Burke, L. D.; Nugent, P. F. Gold Bull. 1998, 31, 39. doi: 10.1007/BF03214760
(10) Kita, H.; Nakajima, H.; Hayashi, K. J. Electroanal. Chem. 1985, 190, 141. doi: 10.1016/0022-0728(85)80083-8
(11) Zhang, T. F.; Liu, Z. P.; Driver, S. M.; Pratt, S. J.; Jenkins, S. J.; King, D. A. Phys. Rev. Lett. 2005, 95, 266102. doi: 10.1103/PhysRevLett.95.266102
(12) Gan, L. Y.; Zhao, Y. J. J. Chem. Phys. 2010, 133, 094703. doi: 10.1063/1.3483235
(13) Liu, Y. H.;Wei, L.; Hu, Y. Z.; Huang, X. Y.;Wang, J. Q.; Li, J. Q.; Hu, X. L.; Zhuang, N. F. J. Alloy. Compd. 2016, 656, 452. doi: 10.1016/j.jallcom.2015.10.004
(14) Shubina, T. E.; Hartnig, C.; Koper, M. T. M. Phys. Chem. Chem. Phys. 2004, 6, 4215. doi: 10.1039/B407669A
(15) Wang, L.; He, C. Z.; Zhang, W. H.; Li, Z. Y.; Yang, J. L. J. Phys. Chem. C 2014, 118, 17511. doi: 10.1021/jp501620h
(16) Lv, C. Q.; Liu, J. H.;Wang, H.;Wang, G. C. Catal. Commun. 2015, 60, 60. doi: 10.1016/j.catcom.2014.11.013
(17) Yuan, D.W.; Gong, X. G.;Wu, R. Q. J. Chem. Phys. 2008, 128, 064706. doi: 10.1063/1.2835545
(18) Zhong, W. H.; Liu, Y. X.; Zhang, D. J. J. Phys. Chem. C 2012, 116, 2994. doi: 10.1021/jp210304z
(19) Montero, M. A.; Gennero de Chialvo, M. R.; Chialvo, A. C. Int. J. Hydrog. Energy 2011, 36, 3811. doi: 10.1016/j.ijhydene.2010.12.115
(20) Ren, H.; Humbert, M. P.; Menning, C. A.; Chen, J. G.; Shu, Y. Y.; Singh, U. G.; Cheng, W. C. Appl. Catal. A 2010, 375, 303. doi: 10.1016/j.apcata.2010.01.018
(21) Qiu, C. C.; Guo, Y. G.; Zhang, J. T.; Ma, H. Y.; Cai, Y. Q. Mater. Chem. Phys. 2011, 127, 484. doi: 10.1016/j.matchemphys.2011.02.041
(22) Xu, J. B.; Zhao, T. S.; Yang, W.W.; Shen, S. Y. Int. J. Hydrog. Energy 2010, 35, 8699. doi: 10.1016/j.ijhydene.2010.05.008
(23) Yang, L.; Chen, J. H.; Zhong, X. X.; Cui, K. Z.; Xu, Y.; Kuang, Y. F. Colloids Surf. A 2007, 295, 21. doi: 10.1016/j.colsurfa.2006.08.023
(24) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
(25) Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
(28) Blöhl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/ PhysRevB.50.17953
(29) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
(30) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672
(31) Kittel, C. Introduction to Solid State Physics, 8th ed.;Wiley: New York, 2004
(32) Hammer, B. Surf. Sci. 2000, 459, 323. doi: 10.1016/S0039-6028(00)00467-2
(33) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910. doi: 10.1021/ja037700z
(34) Pacchioni, G.; Ricart, J. M.; Illas, F. J. Am. Chem. Soc. 1994, 116, 10152. doi: 10.1021/ja00101a038
(35) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem. Int. Edit. 2007, 46, 2055. doi: 10.1002/ange.200603803
(36) Zhao, S.; Ma, X. D.; Pang, Q.; Sun, H.W.;Wang, G. C. Phys. Chem. Chem. Phys. 2014, 16, 5553. doi: 10.1039/C3CP55048F

1. WANG Juan, LI Shi-Kun, ZHAO Zhen-Chao, ZHOU Dan-Hong, LU An-Hui, ZHANG Wei-Ping.Density Functional Theory Study of CO2 Adsorption in Amine-Functionalized Carbonaceous Materials[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1666-1673
2. WAN Zhao-Min, WEI Xing, PENG Wei, YIN Zheng-Lei, XIAO Li, ZHUANG Lin.On-Line Electrochemical Transmission Infrared Spectroscopic Study of Pb2+ Enhanced C―C Bond Breaking in the Ethanol Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1467-1472
3. GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo.One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015,31(11): 2117-2123
4. CAO Xiao-Xiao, SU Yan, ZHAO Ji-Jun, LIU Chang-Ling, ZHOU Pan-Wang.Stability and Raman Spectroscopy of Alkane Guest Molecules (CnHm, n≤6, m≤14) in 51262 and 51264 Water Cavities by Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1437-1446
5. WANG Li, MA Jun-Hong.Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1267-1273
6. WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin.Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2014,30(4): 708-714
7. WANG Chen, WEI Zi-Zhang, LÜ Yong-Kang, XING Bin, WANG Gui-Chang.Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces[J]. Acta Phys. -Chim. Sin., 2013,29(04): 723-730
8. ZHOU Xin-Wen, GAN Ya-Li, SUN Shi-Gang.Studies of Oxidation Processes of Methanol on Hollow CoPt Nanospheres and In situ Electrochemical Fourier Transform Infrared Spectroscopy[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2071-2076
9. ZHUANG Shu-Xin, LIU Su-Qin, ZHANG Jin-Bao, TU Fei-Yue, HUANG Hong-Xia, HUANG Ke-Long, LI Yan-Hua.Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell[J]. Acta Phys. -Chim. Sin., 2012,28(02): 355-360
10. TIAN Hui-Wen, LI Wei-Hua, WANG Da-Peng, HOU Bao-Rong.Adsorption Mechanism of Nicotinic Acid onto a Passive Iron Surface[J]. Acta Phys. -Chim. Sin., 2012,28(01): 137-145
11. LI Qing-Wu, WEI Zi-Dong, CHEN Si-Guo, QI Xue-Qiang, LIU Xiao, DING Wei, MAYu.PtSnCo/C Anode Catalyst for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2011,27(12): 2857-2862
12. DANG Dai, GAO Hai-Li, PENG Liang-Jin, SU Yun-Lan, LIAO Shi-Jun, WANG Ye.Preparation of High Performance Core-Shell PdRu@Pt/CNT Electrocatalyst[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2379-2384
13. RAO Gui-Shi, CHENG Mei-Qin, ZHONG Yan, DENG Xiao-Cong, YI Fei, CHEN Zhi-Ren, ZHONG Qi-Ling, FAN Feng-Ru, REN Bin, TIAN Zhong-Qun.Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2373-2378
14. HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu.Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2051-2058
15. GAO Hai-Li, LIAO Shi-Jun, ZENG Jian-Huang, LIANG Zhen-Xing, XIE Yi-Chun.Preparation and Characterization of Platinum-Decorated Ru/C Catalyst with High Performance and Superior Poison Tolerance[J]. Acta Phys. -Chim. Sin., 2010,26(12): 3193-3198
16. XU Qun-Jie, ZHOU Xiao-Jin, LI Qiao-Xia, LI Jin-Guang.Preparation and Electrochemical Properties of Ternary Catalyst PtRuCo/C for Direct Methanol Fuel Cell[J]. Acta Phys. -Chim. Sin., 2010,26(08): 2135-2138
17. WU Yan-Ni, LIAO Shi-Jun.Shortened Carbon Nanotubes as Supports to Prepare High-Performance Pt/SCNT and PtRu/SCNT Catalysts for Fuel Cells[J]. Acta Phys. -Chim. Sin., 2010,26(03): 669-674
18. YANG Hong-Yan, GUO Pan-Pan, LI Wei-Shan.Electrodeposition Preparation and Activity of CO-Resistant Catalyst Pt-HxWO3 for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2009,25(04): 719-723
19. ZHONG Qi-Ling; ZHANG Bing; DING Yue-Min; LIU Yue-Long; RAO Gui-Shi; WANG Guo-Fu; REN Bin; TIAN Zhong-Qun.In-situ Surface-enhanced Raman Spectroscopic Investigation on Ethanol Electrooxidation in Different Media[J]. Acta Phys. -Chim. Sin., 2007,23(09): 1432-1436
20. ZHENG Hai-Tao; LI Yong-Liang; LIANG Jian-Ying; SHEN Pei-Kang.Methanol Oxidation on Pd-based Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2007,23(07): 993-996
21. LIN Heng; CHEN Guo-liang; ZHENG Zi-shan; ZHOU Jian-zhang; CHEN Sheng-pei; LIN Zhong-hua.The Adsorption and Oxidation of Isopropanol at Platinum Electrode in Alkaline Media[J]. Acta Phys. -Chim. Sin., 2005,21(11): 1280-1284
22. Zhou Hai-Hui;Jiao Shu-Qiang;Chen Jin-Hua;Wei Wan-Zhi;Kuang Ya-Fei.Electrocatalytic Oxidation of Methanol on Nano-fibular Polyaniline Electrode Modified with Pt Microparticles[J]. Acta Phys. -Chim. Sin., 2004,20(01): 9-14
23. Wei Zi-Dong;Miki Atsushi;Ohmori Tadayoshi;Osawa Masatoshi.Methanol Electroxidation on Upd - Sn Modified Platinum Electrodes[J]. Acta Phys. -Chim. Sin., 2002,18(12): 1120-1124
24. Bai Tong-Chun; Lu Jin-Suo.Calculation of Salt Effect Coefficients of Nonaqueous Solution by Scale Particle Theory[J]. Acta Phys. -Chim. Sin., 1991,7(03): 311-317
25. LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun.Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top