Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (4): 975-982    DOI: 10.3866/PKU.WHXB201601281
ARTICLE     
Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials
Xiao ZHOU1,Min-Qiang SUN1,2,Geng-Chao WANG1,*()
1 Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science & Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
2 Jiande Shunfa Chemical Adjuvant Co. Ltd., Hangzhou 311600, P. R. China
Download: HTML     PDF(5720KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Well-dispersed graphene nanosheets (GNS) were prepared by the 60Co γ-ray irradiation reduction technique. On this basis, the hierarchical graphene nanosheet-supported poly(1, 5-diaminoanthraquinone) (GNS@PDAA) nanocomposites were synthesized by the chemically oxidative polymerization method using camphor sulfonic acid as both the dopant and soft template. The influence of the DAA/GNS mass ratios on the morphology, chemical structure, and supercapacitance performance for GNS@PDAA nanocomposites was investigated. The structure, morphology, and electrochemical properties of the composites were characterized by Fourier infrared spectroscopy (FTIR), Raman spectroscopy (Raman), atomic force microscope (AFM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and electrochemical measurements. The results show that for the GNS@PDAA nanocomposite with DAA/GNS mass ratio of 6/1, the PDAA nanoparticles (20-40 nm diameter) are evenly deposited on the surface of GNS, which intercalate a large number of mesopores with 10-30 nmthrough strong π-π stacking and network confinement. As a result, the GNS@PDAA exhibits the highest specific capacitance (398.7 F·g-1 at 0.5 A·g-1), excellent rate capability (71% capacitance retention at 50 A·g-1), and superior cycling stability (only 8.3% capacitance loss after 20000 cycles). Furthermore, based on the GNS@PDAA nanocomposites as both negative and positive electrodes, the as-assembled supercapacitors showed an excellent series/parallel connection effect in aqueous system.



Key wordsGraphene      π-Conjugated polymer      Poly(1, 5-diaminoanthraquinone)      Nanocomposite      Electrode materials      Supercapacitors     
Received: 02 December 2015      Published: 28 January 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51173042);Shanghai Municipality Research Project, China(15520720500)
Corresponding Authors: Geng-Chao WANG     E-mail: gengchaow@ecust.edu.cn
Cite this article:

Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials. Acta Physico-Chimica Sinca, 2016, 32(4): 975-982.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201601281     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I4/975

Samplem(DAA)/mc(DAA)/(Rmolw(PDAA)/%
GNS@PDAA2月1日0.0171月2日31.7
GNS@PDAA6月1日0.0171月2日58
GNS@PDAA12月1日0.0171月2日73.6
GNS@PDAA1月18日0.0171月2日80
GNS@PDAA1月24日0.0171月2日84.1
Table 1 Synthesis condition and chemical composition of GNS@PDAA composites with various mass ratios of DAA and GNS
Fig 1 Chemical structure and morphology of GNS prepared by irradiation reduction
Fig 2 FE-SEM images of GNS@PDAA composites with various DAA/GNS mass ratios and PDAA
Fig 3 (a) FTIR spectra and (b) relationship of I1573/I1488 versus DAA/GNS mass ratio for PDAA and GNS@PDAA composites
Fig 4 Electrochemical performance of the supercapacitors based on PDAA and GNS@PDAA composites with various DAA/GNS mass ratios
Fig 5 (a) Cycling stability at a current density of 1 A?g-1 and (b) Nyquist plots in the frequency range of 105-10-2 Hz before and after 20000 cycles for the supercapacitor based on GNS@PDAA with DAA/GNS mass ratio of 6/1
Fig 6 (a) Assembly schematic illustration, (b) galvanostatic charge/discharge curves in series at a current density of 0.5 A?g-1; (c) assembly schematic illustration; (d) galvanostatic charge/discharge curves in parallel at a current density of 0.5 A?g-1 for three GNS@PDAA supercapacitors
1 Yang X.W. ; Cheng C. ; Wang Y. F. ; Qiu L. ; Li D. Science 2013, 341 (6145), 534.
2 Zhai Y. ; Dou Y. ; Zhao D. ; Fulvio P. F. Mayes R. T., Dai S., Adv. Mater 2011, 23 (42), 4828.
3 Jiang H. ; Lee P. S. ; Li C. Z. Energy Environ. Sci 2013, 6 (1), 41.
4 Zhang F. ; Yuan C. Z. ; Zhu J. J. ; Wang J. ; Zhang X. G. ; Lou X. W. Adv. Funct. Mater 2013, 23 (31), 3909.
5 Wang L. L. ; Xing R. G. ; Zhang B.W. ; Hou Y. Acta Phys. -Chim. Sin 2014, 30 (9), 1659.
5 汪丽丽; 邢瑞光; 张邦文; 侯渊. 物理化学学报, 2014, 30 (9), 1659.
6 Tang Q. Q. ; Wang W. Q. ; Wang G. C. J. Mater. Chem. A 2015, 3 (12), 6662.
7 Li X. G. ; Li H. ; Huang M. R. Chem. Eur. J 2007, 13 (31), 8884.
8 Suematsu S. ; Naoi K. J. Power Sources 2001, 97 (SI), 816.
9 Hashmi S. A. ; Suematsu S. ; Naoi K. J. Power Sources 2004, 137 (1), 145.
10 Gao M. M. ; Yang F. L. ; Wang X. H. ; Zhang G. Q. ; Liu L. F. J. Phys. Chem. C 2007, 111 (46), 17268.
11 Naoi K. ; Suematsu S. ; Hanada M. ; Takenouchi H. J. Electrochem. Soc 2002, 149 (4)
12 Tang Z. Y. ; Xu G. X. Acta Phys. -Chim. Sin 2003, 19 (4), 307.
12 唐致远; 徐国祥. 物理化学学报, 2003, 19 (4), 307.
13 El-Kady M. F. ; Strong V. ; Dubin S. ; Kaner R. B. Science 2012, 335 (6074), 1326.
14 Yang X.W. ; Qiu L. ; Cheng C. ; Wu Y. Z. ; Ma Z. F. ; Li D. Angew. Chem. Int. Edit 2011, 50 (32), 7325.
15 Wu Q. ; Xu Y. X. ; Yao Z. Y. ; Liu A. R. ; Shi G. Q. ACS Nano 2010,, 4 (4), 1963.
16 Meng Y. N. ; Wang K. ; Zhang Y. J. ; Wei Z. X. Adv. Mater 2013, 25 (48), 6985.
17 Worsley M. A. ; Pauzauskie P. J. ; Olson T. Y. ; Biener J. ; Satcher J. H. ; Baumann T. F. J. Am. Chem. Soc 2010, 132 (40), 14067.
18 Wu X. L. ; Wen T. ; Guo H. L. ; Yang S. B. ; Wang X. K. ; Xu A. W. ACS Nano 2013, 7 (4), 3589.
19 Chien H. C. ; Cheng W. Y. ; Wang Y. H. ; Lu S. Y. Adv. Funct. Mater 2012, 22 (23), 5038.
20 Cao J. Y. ; Wang Y. M. ; Chen J. C. ; Li X. H. ; Walsh F. C. ; Ouyang J. H. ; Jia D. C. ; Zhou Y. J. Mater. Chem. A 2015, 3 (27), 14445.
21 Zhou H. H. ; Han G. Y. ; Xiao Y. M. ; Chang Y. Z. ; Zhai H. J. J. Power Sources 2014, 263, 259.
22 Liu Y. ; Ma Y. ; Guang S. Y. ; Ke F. Y. ; Xu H. Y. Carbon 2015, 83, 79.
23 Lu X. J. ; Dou H. ; Yang S. D. ; Hao L. ; Zhang F. ; Zhang X. G. Acta Phys. -Chim. Sin 2011, 27 (10), 2333.
23 卢向军; 窦辉; 杨苏东; 郝亮; 张方; 张校刚. 物理化学学报, 2011, 27 (10), 2333.
24 Liu H. Y. ; Zhang G. Q. ; Zhou Y. F. ; Gao M. M. ; Yang F. L. J. Mater. Chem. A 2013, 1 (44), 13902.
25 Sun M. ; Wang G. C. ; Yang C. Y. ; Jiang H. ; Li C. Z. J. Mater. Chem. A 2015, 3 (7), 3880.
26 Hummers W. S. ; Offeman R. E. J. Am. Chem. Soc 1958, 80 (6), 1339.
27 Sun M. ; Wang G. C. ; Li X.W. ; Li C. Z. J. Power Sources 2014, 245, 436.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[10] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[13] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[14] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.
[15] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.