Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (5): 1214-1220    DOI: 10.3866/PKU.WHXB201602176
ARTICLE     
Adsorption and Wettability of Branched Betaine and Cationic Surfactants on a Poly(methyl methacrylate) Surface
Wei WU1,Dan-Dan LIU2,Zhi-Cheng XU2,Qing-Tao GONG2,Jian-Bin HUANG3,Lei ZHANG2,*(),Lu ZHANG2,*()
1 Oil and Gas Development Management Center of Shengli Oilfield Co. Ltd, SINOPEC, Dongying 257001, Shandong Province, P. R. China
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
3 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download: HTML     PDF(2034KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The wetting properties of the poly(methyl methacrylate) (PMMA) surface by aqueous solutions of the branched zwitterionic surfactants, hexadecanol glycidyl ether glycine betaine and hexadecanol polyoxyethylene(3) glycidyl ether glycine betaine, and branched cationic surfactants, hexadecanol glycidyl ether ammonium chloride and hexadecanol polyoxyethylene (3) glycidyl ether ammonium chloride, were investigated using sessile drop analysis. The influence of the surfactant type, structure, and concentration on contact angle was explored. The results indicate that the PMMA surface was slightly hydrophobically modified with the bulk concentration of surfactant before reaching the critical micelle concentration (cmc) because the adsorbed surfactant molecules are parallel to the substrate surface through hydrogen bonding and the hydrophilic groups are close to the surface. At this stage, the contact angle stays almost constant because of the simultaneous decrease in the surface tension and adhesional tension. However, at concentrations higher than the cmc, the surfactant molecules can adsorb on the PMMA surface through the hydrophobic interactions and the hydrophilic groups toward the bulk phase of solution. This leads to the increase in the hydrophilic character of the PMMA surface. The contact angle decreases dramatically with the increase in bulk surfactant concentration. The variation in the surfactant type and the introduction of ethylene oxide units has little effect on the contact angle because the alkyl chain in these four surfactant molecules is branched in the same way.



Key wordsBranch-chain      Betaine      Cationic surfactant      Poly(methyl methacrylate)      Contact angle      Adsorption     
Received: 23 December 2015      Published: 17 February 2016
MSC2000:  O647  
Fund:  the National Science and Technology Major Project, China(2016ZX05011-003)
Corresponding Authors: Lei ZHANG,Lu ZHANG     E-mail: zl2558@163.com;luyiqiao@hotmail.com
Cite this article:

Wei WU,Dan-Dan LIU,Zhi-Cheng XU,Qing-Tao GONG,Jian-Bin HUANG,Lei ZHANG,Lu ZHANG. Adsorption and Wettability of Branched Betaine and Cationic Surfactants on a Poly(methyl methacrylate) Surface. Acta Physico-Chimica Sinca, 2016, 32(5): 1214-1220.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201602176     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I5/1214

Scheme 1 Structures and abbreviations of the surfactants
Fig 1 Surface tension (γ) versus the concentration (c) for four surfactants
Surfactant 106cmc/(mol?L-1) Amin/nm2
C16GPB 8.0 0.66
C16G(EO)3PB 7.7 0.68
C16GPC 0.5 0.81
C16G(EO)3PC 5.2 0.70
Table 1 cmc and saturation adsorption area (Amin) of four branched surfactants at 30 ℃
Fig 2 Effect of concentration on contact angles (θ) of four branched chain surfactants on PMMA
Fig 3 Effect of concentration on adhesional tension (γcosθ) of four branched chain surfactants on PMMA
Fig 4 Dependence between the adhesional and surface tension of four branched chain surfactants
Fig 5 Effect of four branched chain surfactants concentrations on the PMMA-solution interfacial tensions
Fig 6 Concentration dependence of the adhesion data of four branched chain surfactants on PMMA
1 Zhao G. X. ; Zhu B. Y. Principles of Surfactant Action Beijing: China Light Industry Press, 2003, 490- 534.
1 赵国玺; 朱?瑶. 表面活性剂作用原理, 北京: 中国轻工业出版社, 2003, 490- 534.
2 Li Z. Q. ; Wang Z. L. ; Zhang L. ; Xu Z. C. ; Zhang L. ; Zhao S. Chem. J. Chin. Univ. 2011, 32, 2376.
2 李振泉; 王增林; 张磊; 徐志成; 张路; 赵濉. 高等学校化学学报, 2011, 32, 2376.
3 Zhang L. ; Wang Z. L. ; Li Z. Q. ; Zhang L. ; Xu Z. C. ; Zhao S. ; Yu J. Y. Langmuir 2010, 26 (24), 18834.
4 Zdziennicka A. ; Janczuk B. J. Colloid Interface Sci. 2010, 343 (2), 594.
5 Zdziennicka A. ; Janczuk B. Mater. Chem. Phys. 2010, 124 (1), 569.
6 Zdziennicka A. ; Janczuk B. J. Colloid Interface Sci. 2011, 354 (1), 396.
7 Szymczyk K. ; Jańczuk B. Langmuir 2007, 23 (17), 8740.
8 Zdziennicka A. ; Jańczuk B. J. Colloid Interface Sci. 2010, 350 (2), 568.
9 Chaudhuri R. G. ; Sunayana S. ; Paria S. Soft Matter 2012, 8 (20), 5429.
10 Yuan F. Q. ; Liu D. D. ; Guo L. L. ; Zhu Y.W. ; Xu Z. C. ; Huang J. B. ; Zhang L. ; Zhang L. Acta Phys. -Chim. Sin. 2015, 31 (4), 715.
10 元福卿; 刘丹丹; 郭兰磊; 祝仰文; 徐志成; 黄建滨; 张磊; 张路. 物理化学学报, 2015, 31 (4), 715.
11 Harkot J. ; Jańczuk B. Appl. Surf. Sci. 2009, 255 (6), 3623.
12 Szymczyk K. ; Zdziennicka A. ; Jańczuk B. ; Wójcik W. J. Colloid Interface Sci. 2006, 293 (1), 172.
13 Zdziennicka A. Appl. Surf. Sci. 2009, 255 (6), 3801.
14 Zdziennicka A. ; Jańczuk B. Appl. Surf. Sci. 2010, 257 (3), 1034.
15 Szymczyk K. J. Colloid Interface Sci. 2011, 363 (1), 223.
16 Liu D. D. ; Xu Z. C. ; Zhao Q. ; Zhang L. ; Zhang L. ; Zhao S. Acta Phys. -Chim. Sin. 2013, 29 (3), 569.
16 刘丹丹; 徐志成; 赵群; 张磊; 张路; 赵濉. 物理化学学报, 2013, 29 (3), 569.
17 Hu S. S. ; Zhang L. ; Xu Z. C. ; Gong Q. T. ; Jin Z. Q. ; Zhang L. ; Zhao S. Appl. Surf. Sci. 2015, 355, 868.
18 Liu D. D. ; Xu Z. C. ; Zhang L. ; Luo L. ; Zhang L. ; Wei T. X. ; Zhao S. Langmuir 2012, 28, 16845.
19 Hu S. S. ; Zhang L. ; Xu Z. C. ; Gong Q. T. ; Jin Z. Q. ; Zhang L. ; Zhao S. Acta Phys. -Chim. Sin. 2015, 31 (10), 1924.
19 胡嵩霜; 张磊; 徐志成; 宫清涛; 靳志强; 张路; 赵濉. 物理化学学报, 2015, 31 (10), 1924.
20 Hu S. S. ; Zhou Z. H. ; Zhang L. ; Xu Z. C. ; Gong Q. T. ; Jin Z. Q. ; Zhang L. ; Zhao S. Soft Matter 2015, 11, 7960.
21 Lucassen-Reynders E. H. J. Phys. Chem. 1963, 67 (5), 969.
22 Morra M. J. Colloid Interface Sci. 1996, 182 (1), 312.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 286-295.
[3] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.
[4] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[5] Wei-Wei KONG,Shuang GUO,Yong-Min ZHANG,Xue-Feng LIU. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1205-1213.
[6] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[7] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[8] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[9] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 426-434.
[10] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2013-2021.
[11] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[12] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[13] Yan-Ting LI,Xin-Min LIU,Rui TIAN,Wu-Quan DING,Wei-Ning XIU,Ling-Ling TANG,Jing ZHANG,Hang LI. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1998-2003.
[14] Xiao-Ning ZHANG,Valerie HOLLIMON,DaShan BRODUS. A Method for Attaching Thiol Groups Directly on a Silicon (111) Substrate[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2364-2368.
[15] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2264-2270.