Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (4): 997-1004    DOI: 10.3866/PKU.WHXB201602182
Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation
LI Bao-Qing1, YUAN Wen-Hui2, LI Li3
1. The Key Laboratory of Heavy Metal Pollution Prevention and Soil Remediation, Guangdong Vocational College of Environmental Protection Engineering, Foshan 528216, Guangdong Province, P. R. China;
2. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China;
3. College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
Download:   PDF(2351KB) Export: BibTeX | EndNote (RIS)      


Graphene nanosheets (GNSs) were prepared using oxidation of graphite powder followed by rapid thermal exfoliation under a nitrogen atmosphere. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. The specific surface area was determined using the nitrogen adsorption and desorption method. These analytic techniques revealed that the samples possessed a curled morphology consisting of a thin paper-like structure, which was made of a few graphite layers (approximately four layers) and a large specific surface area (628.5 m2·g-1). The effects of pH, adsorption time, temperature and initial concentration of Pb2+ and Cd2+ on adsorption onto the GNSs were investigated. The maximum adsorption capacities of GNSs for Pb2+ and Cd2+ ions were approximately 460.20 and 72.39 mg·g-1, respectively. These results indicate that the resulting high-quality GNSs can be used as an attractive adsorptive material for removing Pb2+ and Cd2+ from water.

Key wordsGraphene      Thermal exfoliation      Characterization      Adsorption      Heavy metal ion     
Received: 22 December 2015      Published: 18 February 2016
MSC2000:  O643  

The project was supported by the Presidential Foundation of Guangdong Vocational College of Environmental Protection Engineering in 2013, China (KY201303001) and National Natural Science Foundation of China (20976057).

Corresponding Authors: YUAN Wen-Hui     E-mail:
Cite this article:

LI Bao-Qing, YUAN Wen-Hui, LI Li. Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation. Acta Phys. -Chim. Sin., 2016, 32(4): 997-1004.

URL:     OR

(1) Gaur, V. K.; Gupta, S. K.; Pandey, S. D.; Gopal, K.; Misra, V. Environ. Monit. Assess. 2005, 102, 419. doi: 10.1007/s10661-005-6395-6
(2) Wu, G.; Li, L. Y. J. Contam. Hydrol. 1998, 33, 313. doi: 10.1016/S0169-7722(98)00075-8
(3) Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Carbon 2006, 44, 195. doi: 10.1016/j.carbon.2005.07.040
(4) Gardea-Torresdey, J.; Hejazi, M.; Tiemann, K.; Parsons, J. G.; Duarte-Gardea, M.; Henning, J. J. Hazard. Mater. B 2002, 91, 95. doi: 10.1016/S0304-3894(01)00363-6
(5) Dabrowski, A. Adv. Colloid Interface 2001, 93, 135. doi: 10.1016/S0001-8686(00)00082-8
(6) Lagadic, I. L.; Mitchell, M. K.; Payne, B. D. Environ. Sci. Technol. 2001, 35, 984. doi: 10.1021/es001526m
(7) Machida, M.; Yamazaki, R.; Aikawa, M.; Tatsumoto, H. Sep. Purif. Technol. 2005, 46, 88. doi: 10.1016/j.seppur.2005.04.015
(8) Machida, M.; Mochimaru, T.; Tatsumoto, H. Carbon 2006, 44, 2681. doi: 10.1016/j.carbon.2006.04.003
(9) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J. Nature 2004, 427, 523. doi: 10.1038/nature02311
(10) Yang, Z.; Xia, Y.; Mokaya, R. J. Am. Chem. Soc. 2007, 129, 1673. doi: 10.1021/ja067149g
(11) Wu, W. Q.; Yang, Y.; Zhou, H. H.; Ye, T. T.; Huang, Z. Y.; Liu, R.; Kuang, Y. F. Water Air Soil Pollut. 2013, 224, 1372. doi: 10.1007/s11270-012-1372-5
(12) Shim, J.W.; Park, S. J.; Ryu, S. K. Carbon 2001, 39, 1635. doi: 10.1016/S0008-6223(00)00290-6
(13) Machida, M.; Aikawa, M.; Tatsumoto, H. J. Hazard. Mater. B 2005, 120, 271. doi: 10.1016/j.jhazmat.2004.11.029
(14) Mohan, D.; Singh, K. P. Water Res. 2002, 36, 2304. doi: 10.1016/S0043-1354(01)00447-X
(15) Leyva-Ramos, R.; Bernal-Jacome, L. A.; Acosta-Rodriguez, I. Sep. Purif. Technol. 2005, 45, 41. doi: 10.1016/j.seppur.2005.02.005
(16) Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.;Wu, D.; Wei, B. Carbon 2003, 41, 2787. doi: 10.1016/S0008-6223(03)00392-0
(17) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. doi: 10.1021/cr900070d
(18) Sridhar, V.; Jeon, J. H.; Oh, I. K. Carbon 2010, 48, 2953. doi: 10.1016/j.carbon.2010.04.034
(19) Novoselov, K. S.; Geim, A. K.; Morozov S. V. Science 2004, 306, 666. doi: 10.1126/science.1102896
(20) Liang, M.; Zhi, L. J. Mater. Chem. 2009, 19, 5871. doi: 10.1039/b901551e
(21) Madadrang, C. J.; Kim, H. Y.; Gao, G. H.;Wang, N.; Zhu, J.; Feng, H.; Matthew Gorring, M.; Kasner, M. L.; Hou, S. F. ACS Appl. Mater. Interfaces 2012, 4, 1186. doi: 10.1021/am201645g
(22) Yang, S.; Li, L. Y.; Pei, Z. G.; Li, C. M.; Shan, X. Q.;Wen, B.; Zhang, S. Z.; Zheng, L. R.; Zhang, J.; Xie, Y. N.; Huang, R. X. Carbon 2014, 75, 227. doi: 10.1016/j.carbon.2014.03.057
(23) Tan, P.; Sun, J.; Hu, Y. Y.; Fang, Z.; Bi, Q.; Chen, Y. C.; Cheng, J. H. J. Hazard. Mater. 2015, 297, 251. doi: 10.1016/j.jhazmat.2015.04.068
(24) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud' homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535.
(25) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(26) Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493. doi: 10.1016/j.carbon.2008.10.031
(27) Yuan, W. H.; Li, B. Q.; Li, L. Acta Phys. -Chim. Sin. 2011, 27, 2244. [袁文辉, 李保庆, 李莉. 物理化学学报, 2011, 27, 2244.] doi: 10.3866/PKU.WHXB20110838
(28) Yuan, W. H.; Li, B. Q.; Li, L. Appl. Surf. Sci. 2011, 257, 10183. doi: 10.1016/j.apsusc.2011.07.015
(29) Qian, J. S.; Jin, H. Y.; Chen, B. L.; Lin, M.; Lu, W.; Tang, W. M.; Xiong, W.; Chan, H. L.W.; Lau, S. P.; Yuan, J. K. Angew. Chem. Int. Edit. 2015, 54, 6800. doi: 10.1002/anie.201501261
(30) Moreno-Castilla, C.; López-Ramón, M. V.; Carrasco-Marín, F. Carbon 2000, 38, 1995. doi: 10.1016/S0008-6223(00)00048-8
(31) Scherrer, P. Göttinger Nachrichten 1918, 2, 98.
(32) Pan, D.;Wang, S.; Zhao, B.;Wu, M.; Zhang, H.;Wang, Y.; Jiao, Z. Chem. Mater. 2009, 21, 3136. doi: 10.1021/cm900395k
(33) Szabó, T.; Berkesi, O.; Dékány, I. Carbon 2005, 43, 3186. doi: 10.1016/j.carbon.2005.07.013
(34) Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.;Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. doi: 10.1021/jp710931h
(35) Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036
(36) Paek, S. M.; Yoo, E. J.; Honma, I. Nano Lett. 2009, 9, 72. doi: 10.1021/nl802484w
(37) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. doi: 10.1038/nature05545
(38) Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S. Nano Lett. 2007, 7, 3569. doi: 10.1021/nl0714177
(39) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Phys. Chem. Chem. Phys. 2007, 9, 1276. doi: 10.1039/b613962k
(40) Liu, M. X.; Gan, L. H.; Xiong, W.; Zhao, F. Q.; Fan, X. Z.; Zhu, D. Z.; Xu, Z. J.; Hao, Z. X.; Chen, L.W. Energy Fuel. 2013, 27, 1168. doi: 10.1021/ef302028j
(41) Liu, M. X.; Gan, L. H.; Xiong, W.; Xu, Z. J.; Zhu, D. Z.; Chen, L.W. J. Mater. Chem. A 2014, 2, 2555.
(42) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034
(43) Stafiej, A.; Pyrzynska, K. Sep. Purif. Technol. 2007, 58, 49. doi: 10.1016/j.seppur.2007.07.008
(44) Deng, X. J.; Lv, L. L.; Li, H.W.; Luo, F. J. Hazard. Mater. 2010, 183, 923. doi: 10.1016/j.jhazmat.2010.07.117
(45) Kabbashi, N. A.; Atieh, M. A.; Al-Mamun, A.; Mirghami, M. E.; Alam, M. D. Z.; Yahya, N. J. Environ. Sci. 2009, 21, 539. doi: 10.1016/S1001-0742(08)62305-0
(46) Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.;Wu, D.; Wei, B. Carbon 2003, 41, 2787. doi: 10.1016/S0008-6223(03)00392-0
(47) Wang, H. J.; Zhou, A. L.; Peng, F.; Yu, H.; Chen, L. F. Mater. Sci. Eng. A 2007, 466, 201. doi: 10.1016/j.msea.2007.02.097
(48) Li, Y. H.;Wang, S.; Luan, Z.; Ding, J.; Xu, C.;Wu, D. Carbon 2003, 41, 1057. doi: 10.1016/S0008-6223(02)00440-2
(49) Wang, J.; Chen, B. L. Chem. Eng. J. 2015, 281, 379. doi: 10.1016/j.cej.2015.06.102
(50) Sanchez-Polo, M.; Rivera-Utrilla, J. Environ. Sci. Technol. 2002, 36, 3850. doi: 10.1021/es0255610
(51) Rivera-Utrilla, J.; Sanchez-Polo, M. Water. Res. 2003, 37, 3335. doi: 10.1016/S0043-1354(03)00177-5
(52) Yushin, G.; Dash, R.; Jagiello, J.; Fischer, J. E.; Gogotsi, Y. Adv. Funct. Mater. 2006, 16, 2288. doi: 10.1002/adfm.200500830

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[5] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[7] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[12] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[13] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[14] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[15] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.