Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (4): 997-1004    DOI: 10.3866/PKU.WHXB201602182
Article     
Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation
LI Bao-Qing1, YUAN Wen-Hui2, LI Li3
1. The Key Laboratory of Heavy Metal Pollution Prevention and Soil Remediation, Guangdong Vocational College of Environmental Protection Engineering, Foshan 528216, Guangdong Province, P. R. China;
2. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China;
3. College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
Download:   PDF(2351KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene nanosheets (GNSs) were prepared using oxidation of graphite powder followed by rapid thermal exfoliation under a nitrogen atmosphere. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. The specific surface area was determined using the nitrogen adsorption and desorption method. These analytic techniques revealed that the samples possessed a curled morphology consisting of a thin paper-like structure, which was made of a few graphite layers (approximately four layers) and a large specific surface area (628.5 m2·g-1). The effects of pH, adsorption time, temperature and initial concentration of Pb2+ and Cd2+ on adsorption onto the GNSs were investigated. The maximum adsorption capacities of GNSs for Pb2+ and Cd2+ ions were approximately 460.20 and 72.39 mg·g-1, respectively. These results indicate that the resulting high-quality GNSs can be used as an attractive adsorptive material for removing Pb2+ and Cd2+ from water.



Key wordsGraphene      Thermal exfoliation      Characterization      Adsorption      Heavy metal ion     
Received: 22 December 2015      Published: 18 February 2016
MSC2000:  O643  
Fund:  

The project was supported by the Presidential Foundation of Guangdong Vocational College of Environmental Protection Engineering in 2013, China (KY201303001) and National Natural Science Foundation of China (20976057).

Corresponding Authors: YUAN Wen-Hui     E-mail: cewhyuan@scut.edu.cn
Cite this article:

LI Bao-Qing, YUAN Wen-Hui, LI Li. Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation. Acta Phys. -Chim. Sin., 2016, 32(4): 997-1004.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201602182     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I4/997

(1) Gaur, V. K.; Gupta, S. K.; Pandey, S. D.; Gopal, K.; Misra, V. Environ. Monit. Assess. 2005, 102, 419. doi: 10.1007/s10661-005-6395-6
(2) Wu, G.; Li, L. Y. J. Contam. Hydrol. 1998, 33, 313. doi: 10.1016/S0169-7722(98)00075-8
(3) Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Carbon 2006, 44, 195. doi: 10.1016/j.carbon.2005.07.040
(4) Gardea-Torresdey, J.; Hejazi, M.; Tiemann, K.; Parsons, J. G.; Duarte-Gardea, M.; Henning, J. J. Hazard. Mater. B 2002, 91, 95. doi: 10.1016/S0304-3894(01)00363-6
(5) Dabrowski, A. Adv. Colloid Interface 2001, 93, 135. doi: 10.1016/S0001-8686(00)00082-8
(6) Lagadic, I. L.; Mitchell, M. K.; Payne, B. D. Environ. Sci. Technol. 2001, 35, 984. doi: 10.1021/es001526m
(7) Machida, M.; Yamazaki, R.; Aikawa, M.; Tatsumoto, H. Sep. Purif. Technol. 2005, 46, 88. doi: 10.1016/j.seppur.2005.04.015
(8) Machida, M.; Mochimaru, T.; Tatsumoto, H. Carbon 2006, 44, 2681. doi: 10.1016/j.carbon.2006.04.003
(9) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J. Nature 2004, 427, 523. doi: 10.1038/nature02311
(10) Yang, Z.; Xia, Y.; Mokaya, R. J. Am. Chem. Soc. 2007, 129, 1673. doi: 10.1021/ja067149g
(11) Wu, W. Q.; Yang, Y.; Zhou, H. H.; Ye, T. T.; Huang, Z. Y.; Liu, R.; Kuang, Y. F. Water Air Soil Pollut. 2013, 224, 1372. doi: 10.1007/s11270-012-1372-5
(12) Shim, J.W.; Park, S. J.; Ryu, S. K. Carbon 2001, 39, 1635. doi: 10.1016/S0008-6223(00)00290-6
(13) Machida, M.; Aikawa, M.; Tatsumoto, H. J. Hazard. Mater. B 2005, 120, 271. doi: 10.1016/j.jhazmat.2004.11.029
(14) Mohan, D.; Singh, K. P. Water Res. 2002, 36, 2304. doi: 10.1016/S0043-1354(01)00447-X
(15) Leyva-Ramos, R.; Bernal-Jacome, L. A.; Acosta-Rodriguez, I. Sep. Purif. Technol. 2005, 45, 41. doi: 10.1016/j.seppur.2005.02.005
(16) Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.;Wu, D.; Wei, B. Carbon 2003, 41, 2787. doi: 10.1016/S0008-6223(03)00392-0
(17) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. doi: 10.1021/cr900070d
(18) Sridhar, V.; Jeon, J. H.; Oh, I. K. Carbon 2010, 48, 2953. doi: 10.1016/j.carbon.2010.04.034
(19) Novoselov, K. S.; Geim, A. K.; Morozov S. V. Science 2004, 306, 666. doi: 10.1126/science.1102896
(20) Liang, M.; Zhi, L. J. Mater. Chem. 2009, 19, 5871. doi: 10.1039/b901551e
(21) Madadrang, C. J.; Kim, H. Y.; Gao, G. H.;Wang, N.; Zhu, J.; Feng, H.; Matthew Gorring, M.; Kasner, M. L.; Hou, S. F. ACS Appl. Mater. Interfaces 2012, 4, 1186. doi: 10.1021/am201645g
(22) Yang, S.; Li, L. Y.; Pei, Z. G.; Li, C. M.; Shan, X. Q.;Wen, B.; Zhang, S. Z.; Zheng, L. R.; Zhang, J.; Xie, Y. N.; Huang, R. X. Carbon 2014, 75, 227. doi: 10.1016/j.carbon.2014.03.057
(23) Tan, P.; Sun, J.; Hu, Y. Y.; Fang, Z.; Bi, Q.; Chen, Y. C.; Cheng, J. H. J. Hazard. Mater. 2015, 297, 251. doi: 10.1016/j.jhazmat.2015.04.068
(24) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud' homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535.
(25) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
(26) Wu, Z. S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493. doi: 10.1016/j.carbon.2008.10.031
(27) Yuan, W. H.; Li, B. Q.; Li, L. Acta Phys. -Chim. Sin. 2011, 27, 2244. [袁文辉, 李保庆, 李莉. 物理化学学报, 2011, 27, 2244.] doi: 10.3866/PKU.WHXB20110838
(28) Yuan, W. H.; Li, B. Q.; Li, L. Appl. Surf. Sci. 2011, 257, 10183. doi: 10.1016/j.apsusc.2011.07.015
(29) Qian, J. S.; Jin, H. Y.; Chen, B. L.; Lin, M.; Lu, W.; Tang, W. M.; Xiong, W.; Chan, H. L.W.; Lau, S. P.; Yuan, J. K. Angew. Chem. Int. Edit. 2015, 54, 6800. doi: 10.1002/anie.201501261
(30) Moreno-Castilla, C.; López-Ramón, M. V.; Carrasco-Marín, F. Carbon 2000, 38, 1995. doi: 10.1016/S0008-6223(00)00048-8
(31) Scherrer, P. Göttinger Nachrichten 1918, 2, 98.
(32) Pan, D.;Wang, S.; Zhao, B.;Wu, M.; Zhang, H.;Wang, Y.; Jiao, Z. Chem. Mater. 2009, 21, 3136. doi: 10.1021/cm900395k
(33) Szabó, T.; Berkesi, O.; Dékány, I. Carbon 2005, 43, 3186. doi: 10.1016/j.carbon.2005.07.013
(34) Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.;Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. doi: 10.1021/jp710931h
(35) Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036
(36) Paek, S. M.; Yoo, E. J.; Honma, I. Nano Lett. 2009, 9, 72. doi: 10.1021/nl802484w
(37) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. doi: 10.1038/nature05545
(38) Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S. Nano Lett. 2007, 7, 3569. doi: 10.1021/nl0714177
(39) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Phys. Chem. Chem. Phys. 2007, 9, 1276. doi: 10.1039/b613962k
(40) Liu, M. X.; Gan, L. H.; Xiong, W.; Zhao, F. Q.; Fan, X. Z.; Zhu, D. Z.; Xu, Z. J.; Hao, Z. X.; Chen, L.W. Energy Fuel. 2013, 27, 1168. doi: 10.1021/ef302028j
(41) Liu, M. X.; Gan, L. H.; Xiong, W.; Xu, Z. J.; Zhu, D. Z.; Chen, L.W. J. Mater. Chem. A 2014, 2, 2555.
(42) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034
(43) Stafiej, A.; Pyrzynska, K. Sep. Purif. Technol. 2007, 58, 49. doi: 10.1016/j.seppur.2007.07.008
(44) Deng, X. J.; Lv, L. L.; Li, H.W.; Luo, F. J. Hazard. Mater. 2010, 183, 923. doi: 10.1016/j.jhazmat.2010.07.117
(45) Kabbashi, N. A.; Atieh, M. A.; Al-Mamun, A.; Mirghami, M. E.; Alam, M. D. Z.; Yahya, N. J. Environ. Sci. 2009, 21, 539. doi: 10.1016/S1001-0742(08)62305-0
(46) Li, Y. H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.;Wu, D.; Wei, B. Carbon 2003, 41, 2787. doi: 10.1016/S0008-6223(03)00392-0
(47) Wang, H. J.; Zhou, A. L.; Peng, F.; Yu, H.; Chen, L. F. Mater. Sci. Eng. A 2007, 466, 201. doi: 10.1016/j.msea.2007.02.097
(48) Li, Y. H.;Wang, S.; Luan, Z.; Ding, J.; Xu, C.;Wu, D. Carbon 2003, 41, 1057. doi: 10.1016/S0008-6223(02)00440-2
(49) Wang, J.; Chen, B. L. Chem. Eng. J. 2015, 281, 379. doi: 10.1016/j.cej.2015.06.102
(50) Sanchez-Polo, M.; Rivera-Utrilla, J. Environ. Sci. Technol. 2002, 36, 3850. doi: 10.1021/es0255610
(51) Rivera-Utrilla, J.; Sanchez-Polo, M. Water. Res. 2003, 37, 3335. doi: 10.1016/S0043-1354(03)00177-5
(52) Yushin, G.; Dash, R.; Jagiello, J.; Fischer, J. E.; Gogotsi, Y. Adv. Funct. Mater. 2006, 16, 2288. doi: 10.1002/adfm.200500830

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[5] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[7] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[12] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[13] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[14] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[15] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.