Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (5): 1143-1150    DOI: 10.3866/PKU.WHXB201602184
ARTICLE     
Study of the Hydrated Structure of KCl and NaCl Mixed Solutions Using X-ray Diffraction and Raman Spectroscopy
Jun-Sheng YUAN1,3,*(),Zi-Yu LIU2,3,Fei LI1,3,Shen-Yu LI1,3
1 School of Marine Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
2 School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
3 Engineering Research Center of Seawater Utilization Technology of Ministry of Education, Tianjin 300130, P. R. China
Download: HTML     PDF(2725KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Research on the hydrated structure of KCl and NaCl mixed solutions with a concentration range between 0 and 26% was conducted using X-ray diffraction and Raman spectroscopy at 25 ℃. Their reduced structure functions, F(Q), and reduced pair distribution functions, G(r), obtained from X-ray diffraction indicate that compared with Na+, the hydration numbers and shell radii of the hydrated K+ ions are larger. This explains why the solubility of NaCl is higher than that of KCl at 25 ℃. According to the Raman spectroscopy, the tetrahedral hydrogen bonds of water molecules will be destroyed with the increase in KCl concentration and the decrease in NaCl concentration. The extent of the bond destruction has systematic variations; for example, increasing at first and then decreasing. These results show that the destruction of the hydrogen bond structure resulting from Na+ is more serious than from K+. Also, with the appropriate K+ content in the NaCl solution, Na+ will behave as a structure breaker instead of a structure maker, which enhances the destructiveness of the solution structure.



Key wordsX-ray diffraction      Raman spectroscopy      Potassium chloride      Sodium chloride      Solution structure     
Received: 11 December 2015      Published: 18 February 2016
MSC2000:  O641  
Fund:  the Basic Research Project of Applied Basic Research Plan of Hebei Province, China(13963103D);Program for Changjiang Scholars and Innovative Research Team in University, China(IRT14R14);National Key Technology R & D Program, China(2015BAB09B00)
Corresponding Authors: Jun-Sheng YUAN     E-mail: jsyuan2012@126.com
Cite this article:

Jun-Sheng YUAN,Zi-Yu LIU,Fei LI,Shen-Yu LI. Study of the Hydrated Structure of KCl and NaCl Mixed Solutions Using X-ray Diffraction and Raman Spectroscopy. Acta Phys. -Chim. Sin., 2016, 32(5): 1143-1150.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201602184     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I5/1143

Sample w(KCl)/% w(NaCl)/% Density/
(g·cm-3)
n(KCl):n(NaCl):n(H2O)
A 0.00 26.0 1.1930 0:1:9.30
B 5.00 23.0 1.2076 1:5.87:59.70
C 11.0 20.0 1.2288 1:2.32:26.04
D 14.0 15.0 1.2096 1:1.37:21.02
E 18.0 10.0 1.1994 1:0.71:16.58
F 22.0 5.00 1.1887 1:0.29:13.76
G 26.0 0.00 1.1698 1:0:11.78
Table 1 Mass fractions (w) and mole ratio of KCl and NaCl aqueous solutions
Fig 1 Reduced structure functions F(Q) for KCl-NaCl solutions
Fig 2 Reduced pair distribution functions G(r) for KCl-NaCl solutions
Fig 3 Reduced pair distribution functions G(r) and fitting peaks for KCl-NaCl solutions
Pair Peak Area Amplitude Center/nm
Na+-O A 0.087 0.332 0.2399
B 0.047 0.182 0.2375
C 0.079 0.302 0.2383
D 0.008 0.035 0.2461
E 0.013 0.037 0.2420
F 0.004 0.034 0.2460
K+-O B 0.135 0.367 0.2568
C 0.123 0.353 0.2548
D 0.185 0.477 0.2599
E 0.184 0.509 0.2621
F 0.137 0.487 0.2674
G 0.411 0.924 0.2755
O-O A 0.129 0.356 0.2841
B 0.189 0.458 0.2852
C 0.049 0.148 0.2871
D 0.013 0.049 0.2866
E 0.031 0.112 0.2804
F 0.062 0.228 0.2856
G 0.235 0.435 0.2884
Cl--O A 0.438 0.860 0.3172
B 0.293 0.707 0.3100
C 0.624 0.956 0.3065
D 0.596 0.951 0.3065
E 0.586 0.979 0.3046
F 0.721 0.983 0.3046
G 0.061 0.218 0.3281
Na+-Cl- A 0.157 0.400 0.2635
K+-Cl- G 0.260 0.584 0.3104
Table 2 Multi-peak fitting parameters of KCl-NaCl solutions
Pair Distance/nm Method Ref.
Na+-O 0.24-0.25 X-ray diffraction 24
0.224-0.237 Car-Parrinello molecular dynamics 24
0.234 quantum mechanical charge field molecular dynamics 7
K+-O 0.26-0.28 neutron diffraction 25
028 quantum mechanical charge field molecular dynamics 7
0.28 quantum mechanical/molecular mechanical molecular dynamics 7
Na+-Cl- 0.275 neutron diffraction 26
0.282 X-ray diffraction 15
Cl--O 0.322 X-ray diffraction 15
0.305-0.315 neutron diffraction 25
K+-Cl- 0.315 X-ray diffraction 15
Table 3 Distance of different bond pairs
Fig 4 Raman spectra of pure water and KCl-NaCl solutions with different concentrations
Fig 5 Excess Raman spectra of aqueous KCl-NaCl solutions at various concentrations
1 Smirnova P. R. ; Grechinb O. V. ; Trostina V. N. Russ. J. Phys. Chem. A 2014, 88, 250.
2 Brady G.W. ; Krause J. T. J. Phys. Chem. 1957, 27, 304.
3 Terekhova D. S. ; Ryss A. I. ; Radchenko I. V. J. Struct. Chem. 1969, 10, 807.
4 Fishkis M. Y. ; Soboleva T. E. J. Struct. Chem. 1974, 15, 175.
5 Neilson G.W. ; Skipper N. Chem. Phys. Lett. 1985, 114, 35.
6 Tongraar A. ; Liedl K. R. ; Rode B. M. J. Phys. Chem. A 1998, 102, 10340.
7 Azam S. S. ; Hofer T. S. ; Randolf B. R. ; Rode B. M. J. Phys. Chem. A 2009, 113, 1827.
8 Ramaniah L. M. ; Bernasconi M. ; Parrinello M. J. Chem. Phys. 1999, 111, 1587.
9 Liu Y. ; Lu H. G. ; Wu Y. B. ; Hu T. P. ; Li Q. L. J. Chem. Phys. 2010, 132, 124503.
10 Harsányi I. ; Bopp P. A. ; Vrhov?ek A. ; Pusztai L. J. Mol. Liq. 2011, 158, 61.
11 Gereben O. ; Pusztai L. J. Non-Cryst. Solids 2015, 407, 213.
12 Mile V. ; Gereben O. ; Kohara S. ; Pusztai L. J. Phys. Chem. B 2012, 116, 9758.
13 Mile V. ; Pusztai L. ; Dominguez H. ; Pizi O. J. Phys. Chem. B 2009, 113, 10760.
14 Palinkas G. ; Radnai T. ; Hajdu F. Zeitschrift Für Naturforschung A 1980, 35, 107.
15 Ohtaki H. ; Fukushima N. J. Solution Chem. 1992, 21, 23.
16 Nikologorskaya E. L. ; Kuznetsov V. V. ; Grechin O. V. ; Trostin V. N. Russ. J. Inorg. Chem. 2000, 45, 1759.
17 Li F. ; Han Z. ; Li D. C. ; Li S. Y. ; Yuan J. S. Chin. J. Anal. Lab. 2014, 33, 1072.
17 李非; 韩镇; 李栋婵; 李申予; 袁俊生. 分析试验室, 2014, 33, 1072.
18 Li F. ; Yuan J. S. ; Li D. C. ; Li S. Y. ; Han Z. J. Mol. Struct. 2015, 1081, 38.
19 Juha′s P. ; Davis T. ; Farrow C. L. ; Billinge S. J. L. J. Appl. Cryst. 2013, 43, 560.
20 Li Q. Z. ; Wu G. S. ; Yu Z.W. J. Am. Chem. Soc. 2006, 128, 1438.
21 Feng W. S. ; Fang Y. ; Xu J. X. ; Fang C. H. ; Jia Q. J. ; Wang H. H. ; Jiang X. M. Acta Phys. -Chim. Sin. 2008, 24 (3), 497.
21 冯望生; 房艳; 徐继香; 房春晖; 贾全杰; 王焕华; 姜晓明. 物理化学学报, 2008, 24 (3), 497.
22 Fu L. X-ray Study of the Structure of LiquidWater. PDissertation h. D. American: Stanford University, 2009.
23 Zhou Y. Q. Structure and Properties of Aqueous Sodium Borate Solutions. PDissertation h. D. Dissertation, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 2010.
23 周永全. 硼酸钠水溶液结构及性质 西宁:中国科学院青海盐湖研究所, 2010.
24 Megyes T. ; Bálint S. ; Grósz T. ; Radnai T. ; Bakó I. J. Chem. Phys. 2008, 128, 044501.
25 Ohtomo N. ; Arakawa K. Bull. Chem. Soc. Jpn. 1980, 53, 1789.
26 Mancinelli R. ; Botti A. ; Bruni F. ; Ricci M. A. J. Phys. Chem. B 2007, 111, 13570.
27 Li F. Study on the Structure of Potassium Salt Aqueous Solutions. PDissertation h. D. Tianjin: Hebei University of Technology, 2015.
27 李非. 钾盐水溶液结构研究, 天津: 河北工业大学, 2015.
28 Wang C. C. ; Lin K. ; Hu N. Y. ; Zhou X. G. ; Liu S. L. Acta Phys. -Chim. Sin. 2012, 28, 1823.
28 王陈琛; 林珂; 胡乃银; 周晓国; 刘世林. 物理化学学报, 2012, 28, 1823.
29 Impey R.W. ; Madden P. A. ; McDonald I. R. J. Phys. Chem. 1983, 87, 5071.
[1] Yongquan ZHOU,Yoshie SOGA,Toshio YAMAGUCHI,Yan FANG,Chunhui FANG. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 483-491.
[2] Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[3] Lu-Di JIN,Jing-Jing XU,Yong ZHANG,Yue-Zhou YU,Chang LIU,Dong-Ping ZHAO,An-Pei YE. Raman Spectroscopic Analysis of Chondrocyte Dedifferentiation during in vitro Proliferation[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2446-2453.
[4] Bo YAN,Huan ZHOU,Wen-Xuan LI. Studies on the Characteristics and Behaviors of the Ion Association Structures of SO42- in Na+, Mg2+//SO42-, Cl-, H2O System by Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 405-414.
[5] ZHONG Jing-Rong, SHAO Lang, YU Chun-Rong, REN Yi-Ming. Study of Thermal Chemical Reactio[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 25-31.
[6] Chen. CHEN,Dan-Feng. LU,Jin. CHENG,Zhi-Mei. QI. Simulation of Surface Plasmon Coupled Emission with Silver Film[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2023-2028.
[7] LIU Meng, LI Guo-Bao, WANG Jia-Guo, LIAO Fu-Hui, LIN Jian-Hua. Low-Temperature Synthesis of Superconductor Ba1-xKxBiO3[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1611-1615.
[8] JIANG Li-Lin. Influence of Photoinduced Electron Transfer on the Ground-State Molecular Structure of Rhodamine 6G Determined by Nonresonance Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 1987-1992.
[9] SU Ya-Qiong, WU De-Yin, TIAN Zhong-Qun. Density Functional Theory Calculations of the Influence of Weak Hydrogen Bonding Interactions on the Raman Spectra of Thiourea in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 1993-1999.
[10] YANG Cheng-Xu, JU Jing, ZHAO Shi-Di, XU Hang-Yu, LIU Meng, LIAO Fu-Hui, LI Guo-Bao, LIN Jian-Hua. Synthesis of β-FeSe by Salt-Flux Method under Air Atmosphere[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2661-2666.
[11] TAO Sha, YU Li-Juan, WU De-Yin, TIAN Zhong-Qun. Raman Spectra of Amino Wagging Vibrational Modes in p-π-Conjugated Molecules[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1609-1617.
[12] ZHAO Lei, WAN Shi-Gang, CHEN Cheng-Dong, LIN Yi-Ji, FANG Xue-Ming, ZHANG Hui. Mirror Symmetry Breaking and Absolute Configuration Correlations of Fe(III) Complexes with Achiral Substituted o-Iminobenzosemiquinonato Ligands[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1183-1191.
[13] TANG Jing, PANG Wen-Hui, Ren He, CHEN Qiao-Lan, SONG Zi-Wang, LIN Jian-Hang. Rapid Transfer of Au Nanoparticle Pattern onto ITO Substrate Using Microcontact Printing Technique[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 612-618.
[14] LUO Wen-Li, SU Ya-Qiong, TIAN Xiang-Dong, ZHAO Liu-Bin, WU De-Yin, TIAN Zhong-Qun. Reaction of p-Chloronitrobenzene Adsorbed on Silver Nanoparticles[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2767-2773.
[15] WANG Qi, WU Ya-Jing, WANG Jun, LIN Xiao. Organotemplate-Free Hydrothermal Synthesis of Isomorphously Co-Substituted Mordenite Molecular Sieve[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2108-2114.