Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (5): 1175-1182    DOI: 10.3866/PKU.WHXB201602221
ARTICLE     
A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation
Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI*()
Download: HTML     PDF(9199KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Density functional theory (DFT) calculations were performed to gain mechanistic insight into the methanol C―H and O―H bond activations mediated by ruthenium-doped platinum cationic clusters [PtnRum]+ (m + n = 3, n ≥ 1). The charge effect on the reactivity has been elucidated. Calculations show that positive charge is evenly distributed on the three Pt atoms of the [Pt3]+ cluster, while in the Ru-doped clusters, positive charge is mainly distributed on the Ru atom(s). The reactivity of [PtnRum]+ is significantly greater than neutral [PtnRum] during the initial C―H bond cleavage, while only [Pt3]+ exhibits greater reactivity than [Pt3] in the course of O―H bond cleavage. This study may aid in deeper understanding of C―H/O―H bond activations mediated by metal clusters.



Key wordsDensity functional theory      Methanol      Bond activation      Charge      Reactivity     
Received: 06 October 2015      Published: 22 February 2016
MSC2000:  O641  
Fund:  the National Key Basic Research Program of China (973)(2012CB932800);National Natural Science Foundation of China(21103064);National Natural Science Foundation of China(21473070)
Corresponding Authors: Ji-Lai LI     E-mail: jilai@jlu.edu.cn
Cite this article:

Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation. Acta Physico-Chimica Sinca, 2016, 32(5): 1175-1182.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201602221     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I5/1175

Species Atom LSa HSb
[Pt3]+ Pt 0.31 0.34
Pt 0.35 0.33
Pt 0.35 0.33
[Pt2Ru]+ Pt -0.14 -0.05
Pt 0.06 -0.05
Ru 1.08 1.11
[PtRu2]+ Pt -0.27 -0.31
Ru 0.64 0.65
Ru 0.64 0.65
Table 1 Mulliken atomic charges of [PtnRum]+
Fig 1 Binding energies of CH3OH and [PtnRum]+/0 clusters
Scheme 1 Two mechanisms of reactions of CH3OHwith [PtnRum]+ cluster
Fig 2 Potential energy surface (ΔHg) for the reactions of [Pt3]+ (A), [Pt2Ru]+ (B), and [PtRu2]+ (C) with CH3OH starting fromO―H bond activation at the B3LYP level of theory in gas phase
Fig 3 Potential energy (ΔHg) surface for the reactions of [Pt3]+ (A), [Pt2Ru]+ (B) and [PtRu2]+ (C) with CH3OH starting fromC―H bond activation at the B3LYP level of theory in gas phase
Species Path Energy barrier/(kJ?mol-1)
gas ε = 4 ε = 36.6 ε = 78.4
[Pt3]+ M1 140.3 131.5 121.0 124.8
M2 130.2 138.2 127.3 137.3
[Pt2Ru]+ M1 162.0 121.0 92.9 90.9
M2 83.7 55.7 68.2 48.1
[PtRu2]+ M1 184.7 113.0 126.0 145.3
M2 168.3 179.2 162.4 180.9
Table 2 Calculated energy barriers (kJ?mol-1) for ratedetermining steps of the preferable pathways in M1 and M2 mechanisms for the title reaction at the B3LYP level
Species Energy/(kJ?mol-1)
cation neutral
O―H C―H O―H C―H
[Pt3] -33.9 -81.2 20.5 -18.8
[Pt2Ru] 20.5 -38.9 18.0 -21.8
[PtRu2] 65.7 -5.0 27.6 6.3
Table 3 Transition state energies of O―H and C―Hbond activation for the reactions of [PtnRum]+/0 andCH3OH in gas phase
Fig 4 Transition state (TS) energies of the initial O―Hand C―H bond activation for the reactions of [PtnRum]+/0with CH3OH in gas phase
1 Tartaglino U. ; Zykova-Timan T. ; Ercolessi F. ; Tosatti E. Phys. Rep. 2005, 411, 291.
2 Knickelbein M. B. Ann. Rev. Phys. Chem. 1999, 50, 79.
3 Wen Z. ; Liu J. ; Li J. Adv. Mater. 2008, 20, 743.
4 Achatz U. ; Berg C. ; Joos S. ; Fox B. S. ; Beyer M. K. ; Niedner-Schatteburg G. ; Bondybey V. E. Chem. Phys. Lett. 2000, 320, 53.
5 Kwon Y. H. ; Kim S. C. ; Lee S. Y. Macromolecules 2009, 42, 5244.
6 Li Y. ; Tang L. ; Li J. Electrochem. Commun. 2009, 11, 846.
7 Jeon M. K. ; Daimon H. ; Lee K. R. ; Nakahara A. ; Woo S. I. Electrochem. Commun. 2007, 9, 2692.
8 Liu Y. C. ; Qiu X. P. ; Huang Y. Q. ; Zhu W. T. J. Power Sources 2002, 111, 160.
9 Martínez-Huerta M. V. ; Rodríguez J. L. ; Tsiouvaras N. ; Pe?a M. A. ; Fierro J. L. G. ; Pastor E. Chem. Mater. 2008, 20, 4249.
10 Tian W. Q. ; Ge M. ; Sahu B. R. ; Wang D. ; Yamada T. ; Mashiko S. J. Phys. Chem. A 2004, 108, 3806.
11 Xiao L. ; Wang L. J. Phys. Chem. A 2004, 108, 8605.
12 Majumdar D. ; Dai D. ; Balasubramanian K. J. Chem. Phys. 2000, 113, 7919.
13 Majumdar D. ; Dai D. ; Balasubramanian K. J. Chem. Phys. 2000, 113, 7928.
14 Gr?nbeck H. ; Andreoni W. Chem. Phys. 2000, 262, 1.
15 de Visser S. P. ; Shaik S. J. Am. Chem. Soc. 2003, 125, 7413.
16 Geng C. ; Ye S. ; Neese F. Angew. Chem. Int. Edit. 2010, 49, 5717.
17 Li J. ; Wu X. N. ; Schlangen M. ; Zhou S. ; González-Navarrete P. ; Tang S. ; Schwarz H. Angew. Chem. Int. Edit. 2015, 54, 5074.
18 Li J. L. ; Geng C. Y. ; Huang X. R. ; Zhang X. ; Sun C. C. Organometallics 2007, 26, 2203.
19 Li J. L. ; Zhang X. ; Huang X. R. Phys. Chem. Chem. Phys. 2012, 14, 246.
20 Schwarz H. Angew. Chem. Int. Edit. 2011, 50, 10096.
21 Shaik S. ; Cohen S. ; Wang Y. ; Chen H. ; Kumar D. ; Thiel W. Chem. Rev. 2009, 110, 949.
22 Shaik S. ; de Visser S. P. ; Ogliaro F. ; Schwarz H. ; Schr?der D. Curr. Opin. Chem. Biol. 2002, 6, 556.
23 Shaik S. ; Kumar D. ; de Visser S. P. ; Altun A. ; Thiel W. Chem. Rev. 2005, 105, 2279.
24 Sun X. ; Li J. ; Huang X. ; Sun C. Curr. Inorg. Chem. 2012, 2, 64.
25 Ye S. ; Neese F. Curr. Opin. Chem. Biol. 2009, 13, 89.
26 Ye S. ; Neese F. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228.
27 Zhao J. F. ; Sun X. L. ; Li J. L. ; Huang X. R. Acta Phys. -Chim. Sin. 2015, 31, 1077.
27 赵俊凤; 孙小丽; 李吉来; 黄旭日. 物理化学学报, 2015, 31, 1077.
28 Zhong W. ; Liu Y. ; Zhang D. J. Mol. Model. 2012, 18, 3051.
29 Koszinowski K. ; Schlangen M. ; Schr?der D. ; Schwarz H. Int. J. Mass Spectrom. 2004, 237, 19.
30 Koszinowski K. ; Schr?der D. ; Schwarz H. Chem. Phys. Chem. 2003, 4, 1233.
31 Koszinowski K. ; Schr?der D. ; Schwarz H. J. Am. Chem. Soc. 2003, 125, 3676.
32 Koszinowski K. ; Schr?der D. ; Schwarz H. Organometallics 2003, 22, 3809.
33 Koszinowski K. ; Schr?der D. ; Schwarz H. J. Phys. Chem. A 2003, 107, 4999.
34 Koszinowski K. ; Schr?der D. ; Schwarz H. Angew. Chem. Int. Edit. 2004, 43, 121.
35 Koszinowski K. ; Schr?der D. ; Schwarz H. Organometallics 2004, 23, 1132.
36 Kamarudin S. K. ; Achmad F. ; Daud W. R.W. Int. J. Hydrog. Energy 2009, 34, 6902.
37 Kamarudin S. K. ; Daud W. R.W. ; Ho S. L. ; Hasran U. A. J. Power Sources 2007, 163, 743.
38 Rabis A. ; Rodriguez P. ; Schmidt T. J. ACS Catal. 2012, 2, 864.
39 Jin X. ; He B. ; Miao J. ; yuan J. ; Zhang Q. ; Niu L. Carbon 2012, 50, 3083.
40 La-Torre-Riveros L. ; Guzman-Blas R. ; Méndez-Torres A. E. ; Prelas M. ; Tryk D. A. ; Cabrera C. R. ACS Appl. Mater. Interfaces 2012, 4, 1134.
41 Nishanth K. G. ; Sridhar P. ; Pitchumani S. ; Shukla A. K. Fuel Cells 2012, 12, 146.
42 Frisch M. J. ; Trucks G.W. ; Schlegel H. B. ; et al Wallingford, CT: Gaussian 09, Revision A.02; Gaussian Inc, 2009.
43 Becke A. D. J. Chem. Phys. 1993, 98, 5648.
44 Hay P. J. ; Wadt W. R. J. Chem. Phys. 1985, 82, 270.
45 Hay P. J. ; Wadt W. R. J. Chem. Phys. 1985, 82, 299.
46 Li J. ; Ryde U. Inorg. Chem. 2014, 53, 11913.
47 Li J. L. ; Mata R. A. ; Ryde U. J. Chem. Theory Comput. 2013, 9, 1799.
48 Zhang X. ; Schwarz H. Chem. Eur. J. 2010, 16, 5882.
49 Zhang X. ; Schwarz H. Theor. Chem. Acc. 2011, 129, 389.
50 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
51 Fukui K. J. Phys. Chem. 1970, 74, 4161.
52 Marenich A. V. ; Cramer C. J. ; Truhlar D. G. J. Phys. Chem. B 2009, 113, 6378.
53 Neese F. J. Am. Chem. Soc. 2006, 128, 10213.
54 Neese F. WIREs Comput. Mol. Sci. 2012, 2, 73.
55 Sun X. ; Geng C. ; Huo R. ; Ryde U. ; Bu Y. ; Li J. J. Phys. Chem. B 2014, 118, 1493.
56 Sun X. H. ; Sun X. L. ; Geng C. Y. ; Zhao H. T. ; Li J. L. J. Phys. Chem. A 2014, 118, 7146.
57 Sun X. L. ; Huang X. R. ; Li J. L. ; Huo R. P. ; Sun C. C. J. Phys. Chem. A 2012, 116, 1475.
58 Pettersen E. F. ; Goddard T. D. ; Huang C. C. ; Couch G. S. ; Greenblatt D. M. ; Meng E. C. ; Ferrin T. E. J. Comput. Chem. 2004, 25, 1605.
59 Li J. ; González-Navarrete P. ; Schlangen M. ; Schwarz H. Chem. Eur. J. 2015, 21, 7780.
60 Greeley J. ; Mavrikakis M. J. Am. Chem. Soc. 2002, 124, 7193.
61 Greeley J. ; Mavrikakis M. J. Am. Chem. Soc. 2004, 126, 3910.
62 Kozuch S. ; Shaik S. Accounts Chem. Res. 2010, 44, 101.
63 Li J. ; Wu X. N. ; Zhou S. ; Tang S. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Edit. 2015, 54, 12298.
64 Li J. ; Zhou S. ; Wu X. N. ; Tang S. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Edit. 2015, 54, 11861.
65 Zhong W. H. ; Zhang D. J. Prog. React. Kinet. Mech. 2013, 38, 86.
[1] László VON SZENTPÁLY. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 675-682.
[2] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 683-391.
[3] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 625-630.
[4] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 692-698.
[5] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 631-638.
[6] Donghai. YU,Chunying. RONG,Tian. LU,Frank. DE PROFT,Shubin. LIU. Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 639-649.
[7] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 662-674.
[8] Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 497-502.
[9] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[10] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[11] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[12] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[13] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 247-255.
[14] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[15] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.