Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (5): 1087-1104    DOI: 10.3866/PKU.WHXB201602224
REVIEW     
Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors
Wei TANG,Jing WANG*()
Download: HTML     PDF(4226KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The metal oxide heterojunction has often been used to improve the gas sensing properties of resistive metal oxide semiconductor gas sensors. Metal oxide heterojunctions have been demonstrated to have many unique properties such as Fermi-level mediated charge transfer effects as well as synergistic behavior of different components. In this short review, we summarize the fundamental types of metal oxide heterojunction materials reported in domestic and foreign research in recent years. Metal oxide heterojunctions are mainly divided into five categories of mixed composite structures, multi-layer films, structure modified with a second phase, 1D nanostructure and core-shell structure. We review the enhanced gas sensing mechanisms of metal oxide heterojunctions. These mechanisms are discussed in detail, including the role of the heterojunction, synergistic effects, the spill-over effect, response-type inversion, separation of charge carriers, and microstructure manipulation. We also analyze the remaining challenges of metal oxide heterojunction gas sensors. Finally, we provide an outlook for future development of metal oxide heterojunction gas sensors. The future research directions of metal oxide heterojunction gas sensors can be developed from the definition of heterojunction interface mechanisms. It is hoped that determining the heterojunction interface mechanisms will provide some reference for the design of needed gas sensors in a bottom-up route.



Key wordsMetal oxide heterojunction      Synergistic effect      Spill-over effect      Response type inversion      Separation of charge carrier      Microstructure manipulation     
Received: 16 November 2015      Published: 22 February 2016
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(61574025);the National Natural Science Foundation of China(61131004)
Corresponding Authors: Jing WANG     E-mail: wangjing@dlut.edu.cn
Cite this article:

Wei TANG,Jing WANG. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors. Acta Physico-Chimica Sinca, 2016, 32(5): 1087-1104.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201602224     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I5/1087

Material type Reducing gas Oxidizing gas Dominant charge carrier
n-type resistance decrease resistance increase electron
p-type resistance increase resistance decrease hole
Table 1 Response behavior of n-type and p-type materials to reducing and oxidizing gases
Fig 1 Schematic of potential barrier of n-type SnO2 on oxygen exposure in air
Fig 2 (a, b) TEM images of α-Fe2O3@SnO2 core-shell nanorods and (c, d) schematic showing the electron transfer in α-Fe2O3@SnO2 core-shell nanorods104
Fig 3 (a) Schematic diagram of randomly dispersed NiO in SnO2; (b) band structure of p-NiO/n-SnO2 heterojunction106
Fig 4 Schematic diagram of the formation mechanism of In2O3/SnO2 heterojunction microstructure108
Fig 5 (a) Schematic diagram of the In2O3/SnO2 mechanism of heterojunction microstructure, and(b) AC impedance spectroscopy of fabricated sensros108
Fig 6 Schematic diagrams of H2S sensing mechanism operated in CuO-SnO2 composite nanofibers110
Fig 7 Schematic diagrams of (a) H2S sensing mechanisms and (b) effect of the nanograin size on the H2S sensing properties of the CuO-ZnO composite nanofibers26
Fig 8 (a) TEM images of Sn-precursor-coated Ni spheres, (b) TEM images of SnO2-coated Ni spheres after heat treatment at 400℃ for 1 h, (c-f) SEM and TEM images of SnO2 hollow spheres prepared by dissolving the Ni core, (g) high magnification TEM image of dotted area in figure (e), (h) lattice images of SnO2 shell, and (i) lattice fringes from (101) and (110) planes111
Fig 9 (a) Dynamic response of NiO modified SnO2 hollow spheres, and (b) schematic diagram of gas sensing mechanism111
Fig 10 (a, b) TEM images of ZnO-modified SnO2 nanorods, the inserts are SAED patterns of ZnO and SnO2 nanograins; (c) EDX line-scan analysis in TEM of two adjacent ZnO-modified SnO2 nanorods102
Fig 11 Schematic showing the gas sensing response of ZnO modified SnO2 nanorods array fabticated by (a) spin coating and (b) nano beam deposition102
Fig 12 Schematic model of the effect of crystallite size on sensitivity of metal-oxide gas sensors130
Fig 13 Schematic change of potential barrier and conduction channel of n-type SnO2 and p-type CuO decorated SnO2 nanowires115
1 Wang X.W. Principle and Application of Sensor Beihang University Press: Beijing, 2004, pp 2- 25.
1 王雪文. 传感器原理及应用, 北京: 北京航空航天大学出版社, 2004, 2- 25.
2 Lee S. C. ; Hwang B.W. ; Kim S. Y. ; An J. H. ; Jung S. Y. ; Huh J. S. ; Lee D. D. ; Kim J. C. J. Nanoelectron. Optoe. 2015, 10.
3 Zhao H. J. ; Hou H. T. ; Cao J. M. ; Zheng M. B. ; Liu J. S. ; Zhang F. Acta Phys. -Chim. Sin. 2007, 23 (6), 959.
3 赵海军; 候海涛; 曹洁明; 郑明波; 刘劲松; 张防. 物理化学学报, 2007, 23 (6), 959.
4 Hu R. J. ; Wang J. ; Zhu H. C. Acta Phys. -Chim. Sin. 2015, 31 (10), 1997.
4 胡瑞金; 王兢; 朱慧超. 物理化学学报, 2015, 31 (10), 1997.
5 Kumar R. ; Kumar G. ; Al-Dossary O. ; Umar A. Mater. Express 2015, 5 (1), 3.
6 Hu H. T. ; He T. Acta Phys. -Chim. Sin. 2015, 31 (7), 1421.
6 胡海峰; 贺涛. 物理化学学报, 2015, 31 (7), 1421.
7 Feng Q. X. ; Yu P. ; Wang J. ; Li X. G. Acta Phys. -Chim. Sin. 2015, 31 (12), 2405.
7 冯秋霞; 于鹏; 王兢; 李晓干. 物理化学学报, 2015, 31 (12), 2405.
8 Li P. ; Fan H. Mater. Sci. Semicond. Process. 2015, 29, 83.
9 Chen P. P. ; Wang J. ; Zhang C. L. ; Hao Y.W. ; Du H. Y. Acta Phys. -Chim. Sin. 2013, 29 (8), 1827.
9 陈鹏鹏; 王兢; 张春丽; 郝育闻; 杜海英. 物理化学学报, 2013, 29 (8), 1827.
10 Yang X. ; Salles V. ; Kaneti Y. V. ; Liu M. ; Maillard M. ; Journet C. ; Jiang X. ; Brioude A. Sens. Actuator B-Chem. 2015, 220, 1112.
11 Poulomi R. ; Steffen B. ; Patrik S. Angew. Chem. 2011, 50 (13), 2904.
12 Huang K. J. ; Yan L. ; Xie C. S. Appl. Mecha. Mater. 2010, 29- 32, 596.
13 Rezlescu N. ; Doroftei C. ; Rezlescu E. ; Craus M. L. Rom. Rep. Phys. 2008, 60 (4), 1041.
14 Chen J. ; Xu L. ; Li W. ; Gou X. Adv. Mater. 2005, 17 (5), 582.
15 Yang C. ; Xiao F. ; Wang J. ; Su X. Sens. Actuator B-Chem. 2015, 207, 177.
16 Li H. C. Appl. Mecha. Mater. 2013, 303-306, 42.
17 Li P. ; Yu P. ; Xiao D. Q. Funct. Mater. 1999, 30 (2), 56.
17 李平; 余萍; 肖定全. 功能材料, 1999, 30 (2), 56.
18 Feng Z. Y. Preparation, Structure and Properties of α-Fe2O3 Based Gas Sensors. Master Dissertation, Fuzhou: Fuzhou University, 2001.
18 冯祖勇. α-Fe2O3基气敏纳米材料的制备及其结构、性能的研究, 福州: 福州大学, 2001.
19 Hoffman R. L. ; Norris B. J. ; Wager J. F. Appl. Phys. Lett. 2003, 82 (5), 733.
20 Yang J. H. ; Hou H. ; Wang L. ; Liu F. Chin. J. Sens. Actuators 2002, 15 (3), 197.
20 杨建华; 侯宏; 王磊; 刘福. 传感技术学报, 2002, 15 (3), 197.
21 Wei C. H. A Qualitative Analysis and Quantitative Estimation of the Mixed Gas Based on the Electronic Nose Syste. Master Dissertation, Hangzhou: Zhejiang University, 2012.
21 韦彩虹. 基于电子鼻系统的混合气体的定性分析和定量估计, 杭州: 浙江大学, 2012.
22 Chen W. ; 2016-5-4Li Q. ; Xu L. ; Zeng W. J. Nanosci. Nanotechno. 2015, 15, 1245.
23 Patil D. R. ; Patil L. A. Talanta 2009, 77 (4), 1409.
24 Moon W. J. ; Yu J. H. ; Choi G. M. J. Electroceram. 2004, 13 (1-3), 707.
25 Yu Q. ; Zhu J. ; Xu Z. ; Huang X. Sens. Actuator B-Chem. 2015, 213, 27.
26 Katoch A. ; Choi S.W. ; Kim J. H. ; Lee J. H. ; Lee J. S. ; Sang S. K. Sens. Actuator B-Chem. 2015, 214, 111.
27 Kim S. ; Park S. ; Sun G. J. ; Hyun S. K. ; Kim K. K. ; Lee C. Curr. Appl. Phys. 2015, 15 (8), 947.
28 Park S. ; Kim S. ; Sun G. J. ; Lee C. Thin Solid Films 2015, 591, 341.
29 Yu L. S. Semiconductor Heterojunction Physics Science Press: Beijing, 1990, pp 200- 240.
29 虞丽生. 半导体异质结物理, 北京: 科学出版社, 1990, 200- 240.
30 Kusior A. ; Radecka M. ; Rekas M. ; Lubecka M. ; Zakrzewska K. ; Reszka A. ; Kowalski B. J. Procedia Engineering 2012, 47, 1073.
31 Chen A. ; Bai S. ; Shi B. ; Liu Z. ; Li D. ; Liu C. C. Sens. Actuator B-Chem. 2008, 135 (1), 7.
32 Tang W. ; Wang J. ; Qiao Q. ; Liu Z. H. ; Li X. G. J. Mater. Sci. 2015, 50 (6), 2605.
33 Tang W. ; Wang J. ; Yao P. ; Li X. Sens. Actuator B-Chem. 2014, 192, 543.
34 Yu X. ; Zhang G. ; Cao H. ; An X. ; Wang Y. ; Shu Z. ; An X. ; Hua F. New J. Chem. 2012, 36 (12), 2593.
35 Sun-Woo C. ; Jae Young P. ; Sang Sub K. Nanotechnology 2009, 20 (46), 465603.
36 Wang L. ; Kang Y. ; Wang Y. ; Zhu B. ; Zhang S. ; Huang W. ; Wang S. Mater. Sci. Eng., C 2012, 32 (7), 2079.
37 Liu Y. ; Zhu G. ; Chen J. ; Xu H. ; Shen X. ; Yuan A. Appl. Surf. Sci. 2013, 265, 379.
38 Wang W. ; Li Z. ; Zheng W. ; Huang H. ; Wang C. ; Sun J. Sens. Actuator B-Chem. 2010, 143 (2), 754.
39 Zeng Y. ; Bing Y. F. ; Liu C. ; Zheng W. T. ; Zou G. T. Trans. Nonferrous Met. Soc. China 2012, 22 (10), 2451.
40 Rumyantseva M. ; Kovalenko V. ; Gaskov A. ; Makshina E. ; Yuschenko V. ; Ivanova I. ; Ponzoni A. ; Faglia G. ; Comini E. Sens. Actuator B-Chem. 2006, 118 (1-2), 208.
41 de Lacy Costello B. P. J. ; Ewen R. J. ; Ratcliffe N. M. ; Sivanand P. S. Sens. Actuator B-Chem. 2003, 92 (1-2), 159.
42 Chen A. ; Huang X. ; Tong Z. ; Bai S. ; Luo R. ; Liu C. C. Sens. Actuator B-Chem. 2006, 115 (1), 316.
43 Liangyuan C. ; Shouli B. ; Guojun Z. ; Dianqing L. ; Aifan C. ; Liu C. C. Sens. Actuator B-Chem. 2008, 134 (2), 360.
44 Xiao L. ; Shu S. ; Liu S. Sens. Actuator B-Chem. 2015, 221, 120.
45 Bagal L. K. ; Patil J. Y. ; Vaishampayan M. V. ; Mulla I. S. ; Suryavanshi S. S. Sens. Actuator B-Chem. 2015, 207, 383.
46 Choi J. K. ; Hwang I. S. ; Kim S. J. ; Park J. S. ; Park S. S. ; Jeong U. ; Kang Y. C. ; Lee J. H. Sens. Actuator B-Chem. 2010, 150 (1), 191.
47 Ivanov P. ; Llobet E. ; Vilanova X. ; Brezmes J. ; Hubalek J. ; Correig X. Sens. Actuator B-Chem. 2004, 99 (2), 201.
48 Yamazoe N. ; Sakai G. ; Shimanoe K. Catal. Surv. Asia 2003, 7 (1), 63.
49 Yamazoe N. Sens. Actuator B-Chem. 1991, 5 (91), 7.
50 Sakai G. ; Matsunaga N. ; Shimanoe K. ; Yamazoe N. Sens. Actuator B-Chem. 2001, 80 (2), 125.
51 de Lacy Costello B. P. J. ; Ewen R. J. ; Jones P. R. H. ; Ratcliffe N. M. ; Wat R. K. M. Sens. Actuator B-Chem. 1999, 61 (1-3), 199.
52 de Lacy Costello B. P. J. ; Ewen R. J. ; Guernion N. ; Ratcliffe N. M. Sens. Actuator B-Chem. 2002, 87 (1), 207.
53 Shaposhnik D. ; Pavelko R. ; Llobet E. ; Gispert-Guirado F. ; Vilanova X. Procedia Engineering 2011, 25, 1133.
54 Lyson-Sypien B. ; Czapla A. ; Lubecka M. ; Kusior E. ; Zakrzewska K. ; Radecka M. ; Kusior A. ; Balogh A. G. ; Lauterbach S. ; Kleebe H. J. Sens. Actuator B-Chem. 2013, 187, 445.
55 Kim K.W. ; Cho P. S. ; Kim S. J. ; Lee J. H. ; Kang C. Y. ; Kim J. S. ; Yoon S. J. Sens. Actuator B-Chem. 2007, 123 (1), 318.
56 Ivanovskaya M. ; Kotsikau D. ; Faglia G. ; Nelli P. Sens. Actuator B-Chem. 2003, 96 (3), 498.
57 Dandeneau C. S. ; Jeon Y. H. ; Shelton C. T. ; Plant T. K. ; Cann D. P. ; Gibbons B. J. Thin Solid Films 2009, 517 (15), 4448.
58 Vasiliev R. B. ; Rumyantseva M. N. ; Podguzova S. E. ; Ryzhikov A. S. ; Ryabova L. I. ; Gaskov A. M. Mater. Sci. Eng. B 1999, 57 (3), 241.
59 Kosc I. ; Hotovy I. ; Rehacek V. ; Griesseler R. ; Predanocy M. ; Wilke M. ; Spiess L. Appl. Surf. Sci. 2013, 269, 110.
60 Cui G. ; Gao L. ; Yao B. ; Wang S. ; Zhang P. ; Zhang M. Electrochem. Commun. 2013, 30, 42.
61 Li X. Q. ; Fan Q. F. ; Li G. L. ; Huang Y. H. ; Gao Z. ; Fan X.M. ; Zhang C. L. ; Zhou Z.W. Acta Phys. -Chim. Sin. 2015, 31 (4), 783.
61 李湘奇; 范庆飞; 李广立; 黄瑶翰; 高照; 范希梅; 张朝良; 周祚万. 物理化学学报, 2015, 31 (4), 783.
62 Zhang J. F. ; Wang Y. ; Shen T. K. ; Shu X. ; Cui J.W. ; Chen Z. ; Wu Y. C. Acta Phys. -Chim. Sin. 2014, 30 (8), 1535.
62 张剑芳; 王岩; 沈天阔; 舒霞; 崔接武; 陈忠; 吴玉程. 物理化学学报, 2014, 30 (8), 1535.
63 Shaislamov U. ; Yang B. L. J. Mater. Res. 2013, 28 (3), 418.
64 Kim H. R. ; Haensch A. ; Kim I. D. ; Barsan N. ; Weimar U. ; Lee J. H. Adv. Funct. Mater. 2011, 21 (23), 4456.
65 Lou Z. ; Deng J. ; Wang L. ; Wang L. ; Fei T. ; Zhang T. Sens. Actuator B-Chem. 2013, 176, 323.
66 Shuang X. U. ; Yang Y. ; Hong-Yuan W. U. ; Jiang C. ; Jing L.Q. ; Shi K. Y. J. Inorg. Mater. 2013, 28 (6), 584.
67 Saito S. ; Miyayama M. ; Koumoto K. ; Yanagida H. J. Am. Ceram. Soc. 2006, 68 (1), 40.
68 Liu C. ; Kuang Q. ; Xie Z. X. ; Zheng L. S. Cryst Eng Comm 2015, 17, 6308.
69 Basu S. ; Basu P. K. J. Sensors 2009, 29 (12), 777.
70 Arafat M. M. ; Dinan B. ; Akbar S. A. ; Haseeb A. S. M. A. Sensors 2012, 12 (6), 7207.
71 Korotcenkov G. Sens. Actuator B-Chem. 2005, 107 (1), 209.
72 Kwak C. H. ; Woo H. S. ; Lee J. H. Sens. Actuator B-Chem. 2014, 204, 231.
73 Kaneti Y. V. ; Zakaria Q. M. D. ; Zhang Z. ; Chen C. ; Yue J. ; Liu M. ; Jiang X. ; Yu A. J. Mater. Chem. A 2014, 2 (33), 13283.
74 Choi S.W. ; Katoch A. ; Kim J. H. ; Kim S. S. ACS Appl. Mater. Inter. 2014, 6 (20), 17723.
75 Shao F. ; Hoffmann M.W. G. ; Prades J. D. ; Zamani R. ; Arbiol J. ; Morante J. R. ; Varechkina E. ; Rumyantseva M. ; Gaskov A. ; Giebelhaus I. ; Fischer T. ; Mathur S. ; Hernández-Ramírez F. Sens. Actuator B-Chem. 2013, 181, 130.
76 Sen S. ; Kanitkar P. ; Sharma A. ; Muthe K. P. ; Rath A. ; Deshpande S. K. ; Kaur M. ; Aiyer R. C. ; Gupta S. K. ; Yakhmi J. V. Sens. Actuator B-Chem. 2010, 147 (2), 453.
77 Deng J. ; Yu B. ; Lou Z. ; Wang L. ; Wang R. ; Zhang T. Sens. Actuator B-Chem. 2013, 184, 21.
78 Lou Z. ; Li F. ; Deng J. ; Wang L. ; Zhang T. ACS Appl. Mater. Inter. 2013, 5 (23), 12310.
79 Her Y. C. ; Yeh B. Y. ; Huang S. L. ACS Appl. Mater. Inter. 2014, 6 (12), 9150.
80 Park S. ; Ko H. ; Kim S. ; Lee C. ACS Appl. Mater. Inter. 2014, 6 (12), 9595.
81 Chen Y. J. ; Xiao G. ; Wang T. S. ; Zhang F. ; Ma Y. ; Gao P. ; Zhu C. L. ; Zhang E. ; Xu Z. ; Li Q. H. Sens. Actuator B-Chem. 2011, 155 (1), 270.
82 Zang W. ; Nie Y. ; Zhu D. ; Deng P. ; Xing L. ; Xue X. J. Phys. Chem. C 2014, 118 (17), 9209.
83 Xu L. ; Zheng R. ; Liu S. ; Song J. ; Chen J. ; Dong B. ; Song H. Inorg. Chem. 2012, 51 (14), 7733.
84 Zhu C. L. ; Yu H. L. ; Zhang Y. ; Wang T. S. ; Ouyang Q. Y. ; Qi L. H. ; Chen Y. J. ; Xue X. Y. ACS Appl. Mater. Inter. 2012, 4 (2), 665.
85 Liang X. ; Kim T. H. ; Yoon J.W. ; Kwak C. H. ; Lee J. H. Sens. Actuator B-Chem. 2015, 209, 934.
86 Tang W. ; Wang J. J. Mater. Sci. 2015, 50 (12), 4209.
87 Park J. A. ; Moon J. ; Lee S. J. ; Kim S. H. ; Chu H. Y. ; Zyung T. Sens. Actuator B-Chem. 2010, 145 (1), 592.
88 Tang W. ; Wang J. ; Yao P. ; Li X. Sens. Actuator B-Chem. 2014, 192, 543.
89 Park J. Y. ; Choi S.W. ; Lee J.W. ; Lee C. ; Kim S. S. J. Am. Ceram. Soc. 2009, 92 (11), 2551.
90 Tang W. ; Wang J. ; Yao P. J. ; Du H. Y. ; Sun Y. H. Acta Phys.-Chim. Sin. 2014, 30 (4), 781.
90 唐伟; 王兢; 姚朋军; 杜海英; 孙炎辉. 物理化学学报, 2014, 30 (4), 781.
91 Zhu C. L. ; Zhang M. L. ; Qiao Y. J. ; Xiao G. ; Zhang F. ; Chen Y. J. J. Phys. Chem. C 2010, 114 (39), 16229.
92 Chen Y. J. ; Xiao G. ; Wang T. S. ; Zhang F. ; Ma Y. ; Gao P. ; Zhu C. L. ; Zhang E. ; Xu Z. ; Li Q. H. Sens. Actuator B-Chem. 2011, 156 (2), 867.
93 Mashock M. ; Yu K. ; Cui S. ; Mao S. ; Lu G. ; Chen J. AC. Appl. Mater. Inter. 2012, 4 (8), 4192.
94 Choi S.W. ; Katoch A. ; Sun G. J. ; Kim J. H. ; Kim S. H. ; Kim S. S. ACS Appl. Mater. Inter. 2014, 6 (11), 8281.
95 Na C.W. ; Woo H. S. ; Kim I. D. ; Lee J. H. Chem. Commum. 2011, 47 (18), 5148.
96 Hyung-Sik W. ; ChanWoong N. ; Il-Doo K. ; Jong-Heun L. Nanotechnology 2012, 23 (24), 245501.
97 Chen Y. J. ; Zhu C. L. ; Shi X. L. ; Cao M. S. ; Jin H. B. Nanotechnology 2008, 19 (20), 205603.
98 Li T. ; Zeng W. ; Wang Z. Sens. Actuator B-Chem. 2015, 221, 1570.
99 VanderWal R. ; Berger G. ; Kulis M. ; Hunter G. ; Xu J. ; Evans L. Sensors 2009, 9 (10), 7866.
100 Zhang J. ; Liu X. ; Wang L. ; Yang T. ; Guo X. ; Wu S. ; Wang S. ; Zhang S. Nanotechnology 2011, 22 (18), 185501.
101 Sun Z. ; Zussman E. ; Yarin A. L. ; Wendorff J. H. ; Greiner A. Adv. Mater. 2003, 15 (22), 1929.
102 Huang H. ; Gong H. ; Chow C. L. ; Guo J. ; White T. J. ; Tse M. S. ; Tan O. K. Adv. Funct. Mater. 2011, 21 (14), 2680.
103 Kuang Q. ; Lao C. S. ; Li Z. ; Liu Y. Z. ; Xie Z. X. ; Zheng L.S. ; Wang Z. L. J. Phys. Chem. C 2008, 112 (30), 11539.
104 Chen Y. J. ; Zhu C. L. ; Wang L. J. ; Gao P. ; Cao M. S. ; Shi X. L. Nanotechnology 2009, (4), 045502.
105 Choi S.W. ; Katoch A. ; Kim J. H. ; Kim S. S. ACS Appl. Mater. Inter. 2014, 6 (20), 17723.
106 Wang Z. ; Li Z. ; Sun J. ; Zhang H. ; Wang W. ; Zheng W. ; Wang C. J. Phys. Chem. C 2010, 114 (13), 6100.
107 Leach C. ; Ling Z. ; Freer R. Scripta Mater. 2000, 42 (11), 1083.
108 Li P. ; Fan H. ; Cai Y. Sens. Actuator B-Chem. 2013, 185, 110.
109 Jain K. ; Pant R. P. ; Lakshmikumar S. T. Sens. Actuator BChem. 2006, 113 (2), 823.
110 Katoch A. ; Kim J. H. ; Sang S. K. J. Sensors 2015, 2015, 1.
111 Hae-Ryong K. ; Kwon-Il C. ; Kang-Min K. ; Il-Doo K. ; Guozhong C. ; Jong-Heun L. Chem. Commum. 2010, 46 (28), 5061.
112 Zeng W. ; Liu T. ; Wang Z. Physica E 2010, 43 (2), 633.
113 Guo Z. ; Chen G. ; Zeng G. ; Liu L. ; Zhang C. RSC Advances 2015, 5 (67), 54793.
114 Wang Y. ; Qu F. ; Liu J. ; Wang Y. ; Zhou J. ; Ruan S. Sens. Actuator B-Chem. 2015, 209, 515.
115 Miller D. R. ; Akbar S. A. ; Morris P. A. Sens. Actuator BChem. 2014, 204, 250.
116 Ivanovskaya M. ; Kotsikau D. ; Faglia G. ; Nelli P. ; Irkaev S. Sens. Actuator B-Chem. 2003, 93 (03), 422.
117 Montmeat P. ; Marchand J. C. ; Lalauze R. ; Viricelle J. P. ; Tournier G. ; Pijolat C. Sens. Actuator B-Chem. 2003, 95 (1-3), 83.
118 Verma M. K. ; Gupta V. J. Exp. Nanosci. 2013, 8 (3), 326.
119 Chowdhuri A. ; Gupta V. ; Sreenivas K. ; Kumar R. ; Mozumdar S. ; Patanjali P. K. Appl. Phys. Lett. 2004, 84 (7), 1180.
120 Kim S. J. ; Chan W. N. ; Hwang I. S. ; Lee J. H. Sens. Actuator B-Chem. 2012, 168 (7), 83.
121 Sang Sub K. ; Han G. N. ; Sun-Woo C. ; Dong Sub K. ; Hyoun Woo K. J. Phys. D: Appl. Phys. 2012, 45 (20), 205301.
122 Wang C. ; Yin L. ; Zhang L. ; Xiang D. ; Gao R. Sensors 2010, 10 (3), 2088.
123 Zhang M. L. ; Song J. P. ; Yuan Z. H. ; Zheng C. Curr. Appl. Phys. 2012, 12 (3), 678.
124 Korotcenkov G. Mater. Sci. Eng. B 2007, 139 (1), 1.
125 Vinodgopal K. ; Kamat P. V. ; Vinodgopal K. Sol. Energ Mater. Sol. Cells 1995, 38 (1), 401.
126 Akurati K. K. ; Vital A. ; Hany R. ; Bommer B. ; Graule T. ; Winterer M. Int. J. Photoenergy 2005, 7 (4), 153.
127 Martínez A. I. ; Acosta D. R. ; Cedillo G. Thin Solid Films 2005, 490 (2), 118.
128 Zakrzewska K. ; Radecka M. Thin Solid Films 2007, 515 (23), 8332.
129 Barreca D. ; Comini E. ; Ferrucci A. P. ; Gasparotto A. ; Maccato C. ; Maragno C. ; Sberveglieri G. ; Tondello E. Chem. Mater. 2007, 19 (23), 5642.
130 Sun Y. F. ; Liu S. B. ; Meng F. L. ; Liu J. Y. ; Jin Z. ; Kong L.T. ; Liu J. H. Sensors 2012, 12 (3), 2610.
131 Arafat M. M. ; Dinan B. ; Akbar S. A. ; Haseeb A. S. Sensors 2012, 12 (6), 7207.
132 Kumar R. ; Al-Dossary O. ; Kumar G. ; Umar A. Nano-Micr Lett. 2015, 7 (02), 97.
133 Chougule M. A. ; Sen S. ; Patil V. B. Ceram. Int. 2012, 38 (4), 2685.
134 Liu X. H. Synthesis, Regulation and Gas Sensing Properties of MetalOxide Micro/nano Structures.Ph.D. Dissertation, Tianjing: Nankai University, 2012.
134 刘相红. 属氧化物微纳米结构的合成、调控及气敏性能研究, 天津: 南开大学, 2012.
135 Wang L.W. The Synthesis, Modification and Gas Sensing Properties of Semiconductor Metal Oxide Nano Materials.PDissertation h.D. Dissertation, Tianjing: Nankai University, 2014.
135 王丽伟. 半导体金属氧化物纳米材料的合成、改性与气敏性能研究, 天津: 南开大学, 2014.
136 Brutchey R. L. ; Goldberger J. E. ; Koffas T. S. ; Tilley T. D. Chem. Mater. 2003, 15 (5), 1040.
137 Ohtsuki C. ; Miyazaki T. ; Tanihara M. Mater. Sci. Eng. C 2002, 22 (1), 27.
138 Semancik S. ; Cavicchi R. E. ; Wheeler M. C. ; Tiffany J. E. ; Poirier G. E. ; Walton R. M. ; Suehle J. S. ; Panchapakesan B. ; DeVoe D. L. Sens. Actuator B-Chem. 2001, 77 (1-2), 579.
139 Zheng K. B. ; Li J. L. ; Shen H. T. ; Sun D. L. ; Chen G. R. Acta Phys. -Chim. Sin. 2008, 24 (6), 1080.
139 郑凯波; 李静雷; 沈浩颋; 孙大林; 陈国荣. 物理化学学报, 2008, 24 (6), 1080.
140 Patil D. R. ; Patil L. A. Talanta 2009, 77 (4), 1409.
141 Patil D. R. ; Patil L. A. ; Patil P. P. Sens. Actuator B-Chem. 2007, 126 (2), 368.
142 Xing L. L. ; Yuan S. ; Chen Z. H. ; Chen Y. J. ; Xue X. Y. Nanotechnology 2011, 22 (22), 225502.
143 Khan R. ; Ra H.W. ; Kim J. T. ; Jang W. S. ; Sharma D. ; Im Y. H. Sens. Actuator B-Chem. 2010, 150 (1), 389.
144 Peng Y. C. ; Chen C. C. ; Wu H. C. ; Lu J. H. Opt. Mater. 2015, 39, 34.
145 Zhang C. W. ; Yan S. S. J. Appl. Phys. 2009, 106 (6), 063709.
146 Zhang Y. ; Tang F. L. ; Xue H. T. ; Lu W. J. ; Liu J. F. ; Huang M. Physica E 2015, 66 (7), 342.
147 Janotti A. ; Varley J. B. ; Rinke P. ; Umezawa N. ; Kresse G. ; Van deWalle C. G. Phys. Rev. B 2010, 81 (8), 101.
148 Bouamra F. ; Boumeddiene A. ; Rérat M. ; Belkhir H. Appl. Surf. Sci. 2013, 269 (4), 41.
149 Zhou W. ; Liu L. ; Yuan M. ; Song Q. ; Wu P. Comput. Mater. Sci. 2012, 54, 109.
150 Zhang K. C. ; Liu Y. ; Li Y. F. ; Zhu Y. J. Appl. Phys. 2013, 113 (5), 053713.
151 Yuan J. H. ; Gao B. ; Wang W. ; Wang J. B. Acta Phys. -Chim. Sin. 2015, 31 (7), 1302.
151 袁俊辉; 高博; 汪文; 王嘉赋. 物理化学学报, 2015, 31 (7), 1302.
152 Das S. ; Jayaraman V. Prog. Mater Sci. 2014, 66, 112.
153 Qi Q. ; Zhao J. ; Xuan R. F. ; Wang P. P. ; Feng L. L. ; Zhou L.J. ; Wang D. J. ; Li G. D. Sens. Actuator B-Chem. 2014, 191, 659.
154 Du H. Y. ; Wang J. ; Qiao Q. ; Sun Y. H. ; Shao Q. ; Li X. G. Acta Phys. -Chim. Sin. 2015, 31 (4), 800.
154 杜海英; 王兢; 乔俏; 孙炎辉; 邵强; 李晓干. 物理化学学报, 2015, 31 (4), 800.
[1] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[2] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 737-744.
[3] ZHANG Chen, ZHAO Jing-Mao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Sodium Dodecyl Sulfate in CO2 System[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 677-685.
[4] HU Yan, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun, TIAN Zhao-Wu. Factors Influencing Hydroxyl Radical Formation in a Photo-Induced Confined Etching System[J]. Acta Physico-Chimica Sinca, 2013, 29(11): 2392-2398.
[5] WANG Xiao-Xia, XU Hua-Long, SHEN Wei, RUHLMANN Laurent, QIN Feng, SORGUES Sébastien, COLBEAU-JUSTIN Christophe. Synthesis of Ternary Hybrid TiO2-SiO2-POM Catalysts and Its Application in Degrading Rhodamine B under Visible Light Illumination[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1837-1841.
[6] YUAN Zai-Wu, YUAN Jing, LÜ Xin, ZHANG Jian, XU Gui-Ying. Research Progress on the Interactions between Polysaccharides and Surfactants[J]. Acta Physico-Chimica Sinca, 2013, 29(03): 449-459.
[7] WANG Xian-Zhong, KANG Wan-Li, MENG Xiang-Can, FAN Hai-Ming, XU Hai, HUANG Jing-Wei, FU Jian-Bin, ZHANG Yi-Nuo. Ultra-Low Interfacial Tension in High Salinity Reservoir Driven by Synergistic Interaction of Zwitterionic and Anionic Surfactants[J]. Acta Physico-Chimica Sinca, 2012, 28(10): 2285-2290.
[8] YAO Guo-Xin, SHI Bin-Bin, LI Guo-Hua, ZHENG Yi-Fan. Preparation and Electrocatalytic Activity of Tungsten Carbide and Zeolite Nanocomposite[J]. Acta Physico-Chimica Sinca, 2010, 26(05): 1317-1322.
[9] YANG Gui-Ling, WANG Chun, YANG Xiao-Min, ZHAO Na, JIAO Xiao-Yan. Synergistic Effect of a Nonmetal and a Metal on the Electrochemical Properties of a Mg-Based Hydrogen Storage Alloy[J]. Acta Physico-Chimica Sinca, 2010, 26(04): 833-839.
[10] SOLMAZ R.; MERT M. E.; KARDAS G.; YAZICI B.; ERBIL M.. Adsorption and Corrosion Inhibition Effect of 1,1’-Thiocarbonyldiimidazole on Mild Steel in H2SO4 Solution and Synergistic Effect of Iodide Ion[J]. Acta Physico-Chimica Sinca, 2008, 24(07): 1185-1191.
[11] LIN Ming-Gui; FANG Ke-Gong; LI De-Bao; SUN Yu-Han. Effect of Zn and Mn Promoters on Copper-Iron Based Catalysts for Higher Alcohol Synthesis[J]. Acta Physico-Chimica Sinca, 2008, 24(05): 833-838.
[12] Li Yue-Xiang; Wang Tian-Hui; Peng Shao-Qin1 Lü Gong-Xuan; Li Shu-Ben. Synergistic Effect of Eu3+ and Si4+ Co-doping on Photocatalytic Activity of Titanium Dioxide[J]. Acta Physico-Chimica Sinca, 2004, 20(12): 1434-1439.
[13] Zhang Wen-Hua;Peng Jiang-Jie;Ma Yun-Sheng;Hao Li-Qing;Zhuang Shu-Xian. Catalytic Reduction of SO2 by CO on Sulfided CoMo/ Al2O3-TiO2 Catalysts[J]. Acta Physico-Chimica Sinca, 2002, 18(10): 901-906.
[14] Zhang Da-Quan;Gao Li-Xing;Zhou Guo-Ding;Lu Zhu. Synergistic Effects of Benzotriazole and 8-Hydroxyquinoline Combined Inhibitorson Copper Corrosion[J]. Acta Physico-Chimica Sinca, 2002, 18(01): 74-78.
[15] Zhang Ji-Jun, Liu Ying-Jun, Li Neng, Lin Bing-Xiong. Synergistic Effect between CuO and CeO2 for CO Oxidation[J]. Acta Physico-Chimica Sinca, 1999, 15(01): 15-21.