Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (5): 1183-1190    DOI: 10.3866/PKU.WHXB201603032
Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study
ZUO Hui-Wen1, LU Chun-Hai2, REN Yu-Rong3, LI Yi1, ZHANG Yong-Fan1, CHEN Wen-Kai1,4,5
1 Department of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China;
2 College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China;
3 School of Marterials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, P. R. China;
4 Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, Fujian Province, P. R. China;
5 State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
Download:   PDF(2939KB) Export: BibTeX | EndNote (RIS)      


The structural and electronic properties of Pt4 nanoparticles adsorbed on monolayer graphitic carbon nitride (Pt4/g-C3N4), as well as the adsorption behavior of oxygen molecules on the Pt4/g-C3N4 surface have been investigated through first-principles density-functional theory (DFT) calculations with the generalized gradient approximation (GGA). The interaction of the oxygen molecules with the bare g-C3N4 and the Pt4 clusters was also calculated for comparison. Our calculations show that Pt nanoparticles prefer to bond with four edge N atoms on heptazine phase g-C3N4 (HGCN) surfaces, forming two hexagonal rings. For s-triazine phase g-C3N4 (TGCN) surfaces, Pt nanoparticles prefer to sit atop the single vacancy site, forming three bonds with the nearest nitrogen atoms. Stronger hybridization of the Pt nanoparticles with the sp2 dangling bonds of neighboring nitrogen atoms leads to the Pt4 clusters strongly binding on both types of g-C3N4 surface. In addition, the results from Mulliken charge population analyses suggest that there are electrons flowing from the Pt clusters to g-C3N4. According to the comparative analyses of the O2 adsorbed on the Pt4/HGCN, Pt4/TGCN, and pure g-C3N4 systems, the presence of metal clusters promotes greater electron transfer to oxygen molecules and elongates the O―O bond. Meanwhile, its greater adsorbate-substrate distortion and large adsorption energy render the Pt4/HGCN system slightly superior to the Pt4/TGCN system in catalytic performance. The results validate that being supported on g-C3N4 may be a good way to modify the electronic structure of materials and their surface properties improve their catalytic performance.

Key wordsGraphitic carbon nitride      Pt cluster      Oxygen molecule      Adsorption      Photocatalyst      Density functional theory     
Received: 30 November 2015      Published: 03 March 2016
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21203227, 51574090).

Corresponding Authors: CHEN Wen-Kai     E-mail:
Cite this article:

ZUO Hui-Wen, LU Chun-Hai, REN Yu-Rong, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190.

URL:     OR

(1) Seger, B.; Kamat, P. V. J. Phys. Chem. C 2009, 113 (19), 7990. doi: 10.1021/jp900360k
(2) Wu, S. Y.; Ho, J. J. J. Phys. Chem. C 2014, 118 (46), 26764. doi: 10.1021/jp507453h
(3) Song, E. H.; Wen, Z.; Jiang, Q. J. Phys. Chem. C 2011, 115 (9), 3678. doi: 10.1021/jp108978c
(4) Lu, Y. H.; Zhou, M.; Zhang, C.; Feng, Y. P. J. Phys. Chem. C 2009, 113 (47), 20156. doi: 10.1021/jp908829m
(5) Zhou, M.; Zhang, A. H.; Dai, Z. X.; Zhang, C.; Feng, Y. P. J. Chem. Phys. 2010, 132 (19), 194704. doi: 10.1063/1.3427246
(6) Li, Y. F.; Zhou, Z.; Yu, G. T.; Chen, W.; Chen, Z. F. J. Phys. Chem. C 2010, 114 (14), 6250. doi: 10.1021/jp911535v
(7) Lim, D. H.; Negreira, A. S.; Wilcox, J. J. Phys. Chem. C 2011, 115 (18), 8961. doi: 10.1021/jp2012914
(8) Xu, J.; Wang, Y. J.; Zhu, Y. F. Langmuir 2013, 29 (33), 10566. doi: 10.1021/la402268u
(9) Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. J. Am. Chem. Soc. 2009, 131 (5), 1680. doi: 10.1021/ja809307s
(10) Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. ACS Appl. Mater. Interfaces 2014, 6 (19), 16449. doi: 10.1021/am502925j
(11) Wang, X. C.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2 (8), 1596. doi: 10.1021/cs300240x
(12) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18 (41), 4893. doi: 10.1039/B800274F
(13) Zhang, Z. H.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. J. Am. Chem. Soc. 2001, 123 (32), 7788. doi: 10.1021/ja0103849
(14) Li, X. H.; Zhang, J. S.; Chen, X. F.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. C. Chem. Mater. 2011, 23 (19), 4344. doi: 10.1021/cm201688v
(15) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. J. Am. Chem. Soc. 2003, 125 (34), 10288. doi: 10.1021/ja0357689
(16) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nature Materials 2009, 8 (1), 76. doi: 10.1038/NMAT2317
(17) Wirth, J.; Neumann, R.; Antonietti, M.; Saalfrank, P. Phys. Chem. Chem. Phys. 2014, 16 (30), 15917. doi: 10.1039/c4cp02021a
(18) Goettmann, F.; Thomas, A.; Antonietti, M. Angew. Chem. Int. Edit. 2007, 46 (15), 2717. doi: 10.1002/anie.200603478
(19) Lin, J. L.; Pan, Z. M.; Wang, X. C. ACS Sustainable Chemistry & Engineering 2014, 2 (3), 353. doi: 10.1021/sc4004295
(20) Aijaz, A.; Fujiwara, N.; Xu, Q. J. Am. Chem. Soc. 2014, 136 (19), 6790. doi: 10.1021/ja5003907
(21) Huang, Z. J.; Li, F. B.; Chen, B. F.; Lu, T.; Yuan, Y.; Yuan, G. Q. Applied Catalysis B: Environmental 2013, 136-137, 269. doi: 10.1016/j.apcatb.2013.01.057
(22) Dong, F.; Wang, Z. Y.; Sun, Y. J.; Ho, W. K.; Zhang, H. D. J. Colloid Interface Sci. 2013, 401, 70. doi: 10.1016/j.jcis.2013.03.034
(23) Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. ACS Appl. Mater. Interfaces 2014, 6 (2), 1258. doi: 10.1021/am405076b
(24) Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4 (3), 774. doi: 10.1021/cs401208c
(25) Cao, S.W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5 (12), 2101. doi: 10.1021/jz500546b
(26) Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Chem. Mater. 2009, 21 (18), 4093. doi: 10.1021/cm902130z
(27) Unni, S. M.; Illathvalappil, R.; Gangadharan, P. K.; Bhange, S. N.; Kurungot, S. Chem. Commun. 2014, 50 (89), 13769. doi: 10.1039/c4cc06180b
(28) Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Energy & Environmental Science 2012, 5 (5), 6717. doi: 10.1039/c2ee03479d
(29) Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2011, 133 (50), 20116. doi: 10.1021/ja209206c
(30) Kattel, S.; Atanassov, P.; Kiefer, B. Phys. Chem. Chem. Phys. 2013, 15 (1), 148. doi: 10.1039/c2cp42609a
(31) Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J. J. Phys. Chem. C 2014, 118 (13), 6831. doi: 10.1021/jp412501j
(32) Zhu, J. J.; Wei, Y. C.; Chen, W. K.; Zhao, Z.; Thomas, A. Chem. Commun. 2010, 46 (37), 6965. doi: 10.1039/c0cc01432j
(33) Ma, X. G.; Lv, Y. H.; Xu, J.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F. J. Phys. Chem. C 2012, 116 (44), 23485. doi: 10.1021/jp308334x
(34) Delley, B. Phys. Rev. B 2002, 66 (15), 155125. doi: 10.1103/PhysRevB.66.155125
(35) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
(36) Stampfl, C.; Van deWalle, C. G. Phys. Rev. B 1999, 59 (8), 5521. doi: 10.1103/PhysRevB.59.5521
(37) Heyd, J.; Scuseria, G. E. J. Chem. Phys. 2004, 121 (3), 1187. doi: 10.1063/1.1760074
(38) Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. J. Chem. Phys. 2005, 123 (17), 174101. doi: 10.1063/1.2085170
(39) Pan, H.; Zhang, Y.W.; Shenoy, V. B.; Gao, H. J. ACS Catal. 2011, 1 (2), 99. doi: 10.1021/cs100045u
(40) Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Chem. Eur. J. 2008, 14 (27), 8177. doi: 10.1002/chem.200800190
(41) Teter, D. M.; Hemley, R. J. Science 1996, 271 (5245), 53. doi: 10.1126/science.271.5245.53
(42) Xu, Y.; Gao, S. P. Int. J. Hydrogen Energy 2012, 37 (15), 11072. doi: 10.1016/j.ijhydene.2012.04.138
(43) Wu, F.; Liu, Y. F.; Yu, G. X.; Shen, D. F.; Wang, Y. L.; Kan, E. J. J. Phys. Chem. Lett. 2012, 3 (22), 3330. doi: 10.1021/jz301536k
(44) Wu, H. Z.; Liu, L. M.; Zhao, S. J. Phys. Chem. Chem. Phys. 2014, 16 (7), 3299. doi: 10.1039/c3cp54333a
(45) Mattesini, M.; Matar, S. F.; Etourneau, J. J. Mater. Chem. 2000, 10 (3), 709. doi: 10.1039/a908903i
(46) Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Chem. Mater. 2000, 12 (11), 3264. doi: 10.1021/cm000328r
(47) Lim, D. H.; Wilcox, J. J. Phys. Chem. C 2011, 115 (46), 22742. doi: 10.1021/jp205244m

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[6] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[7] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[8] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[9] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[10] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[11] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[12] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[13] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[14] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[15] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.