Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (5): 1183-1190    DOI: 10.3866/PKU.WHXB201603032
ARTICLE     
Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study
Hui-Wen ZUO1,Chun-Hai LU2,Yu-Rong REN3,Yi LI1,Yong-Fan ZHANG1,Wen-Kai CHEN1,4,5,*()
1 Department of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
2 College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
3 School of Marterials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, P. R. China
4 Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, Fujian Province, P. R. China
5 State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
Download: HTML     PDF(2939KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The structural and electronic properties of Pt4 nanoparticles adsorbed on monolayer graphitic carbon nitride (Pt4/g-C3N4), as well as the adsorption behavior of oxygen molecules on the Pt4/g-C3N4 surface have been investigated through first-principles density-functional theory (DFT) calculations with the generalized gradient approximation (GGA). The interaction of the oxygen molecules with the bare g-C3N4 and the Pt4 clusters was also calculated for comparison. Our calculations show that Pt nanoparticles prefer to bond with four edge N atoms on heptazine phase g-C3N4 (HGCN) surfaces, forming two hexagonal rings. For s-triazine phase g-C3N4 (TGCN) surfaces, Pt nanoparticles prefer to sit atop the single vacancy site, forming three bonds with the nearest nitrogen atoms. Stronger hybridization of the Pt nanoparticles with the sp2 dangling bonds of neighboring nitrogen atoms leads to the Pt4 clusters strongly binding on both types of g-C3N4 surface. In addition, the results from Mulliken charge population analyses suggest that there are electrons flowing from the Pt clusters to g-C3N4. According to the comparative analyses of the O2 adsorbed on the Pt4/HGCN, Pt4/TGCN, and pure g-C3N4 systems, the presence of metal clusters promotes greater electron transfer to oxygen molecules and elongates the O―O bond. Meanwhile, its greater adsorbate-substrate distortion and large adsorption energy render the Pt4/HGCN system slightly superior to the Pt4/TGCN system in catalytic performance. The results validate that being supported on g-C3N4 may be a good way to modify the electronic structure of materials and their surface properties improve their catalytic performance.



Key wordsGraphitic carbon nitride      Pt cluster      Oxygen molecule      Adsorption      Photocatalyst      Density functional theory     
Received: 30 November 2015      Published: 03 March 2016
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21203227);the National Natural Science Foundation of China(51574090)
Corresponding Authors: Wen-Kai CHEN     E-mail: wkchen@fzu.edu.cn
Cite this article:

Hui-Wen ZUO,Chun-Hai LU,Yu-Rong REN,Yi LI,Yong-Fan ZHANG,Wen-Kai CHEN. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603032     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I5/1183

 
System a/nm-1 c/nm-1 dring/nm-1 dbridge/nm-1
HGCN literature 0.730a, 0.713b, c 0.672a, 0.696c 0.133c 0.147c
this work 0.712 0.638 0.133 0.148
TGCN literature 0.474d, 0.475e 0.672d, 0.659e 0.132e 0.144e
this work 0.476 0.669 0.132 0.145
 
System GGA HSE06 Theoretical Experimental
HGCN 1.25 2.68 1.19a, 1.15b 2.70c
TGCN 1.50 2.88 1.48d 3.10e
 
 
 
 
Eads/eV dPt―Pt/nm dring/nm dbridge/nm h/nm q/e
(a) -3.01 0.267 0.137 0.149 0.065 0.12
(b) -5.18 0.264 0.138 0.148 0.132 0.23
(c) -4.85 0.270 0.138 0.149 0.134 0.40
(d) -5.38 0.267 0.138 0.148 0.131 0.25
 
 
 
 
 
System Eads/eV Milliken charge/e dO―O/nm
HGCN -0.59 0.02 0.123
Pt4/HGCN -1.69 0.39 0.139
TGCN -0.65 0.09 0.124
Pt4/TGCN -1.60 0.42 0.140
Pt4 -1.14 0.31 0.136
 
 
1 Seger B. ; Kamat P. V. J. Phys. Chem. C 2009, 113 (19), 7990.
2 Wu S. Y. ; Ho J. J. J. Phys. Chem. C 2014, 118 (46), 26764.
3 Song E. H. ; Wen Z. ; Jiang Q. J. Phys. Chem. C 2011, 115 (9), 3678.
4 Lu Y. H. ; Zhou M. ; Zhang C. ; Feng Y. P. J. Phys. Chem. C 2009, 113 (47), 20156.
5 Zhou M. ; Zhang A. H. ; Dai Z. X. ; Zhang C. ; Feng Y. P. J. Chem. Phys. 2010, 132 (19), 194704.
6 Li Y. F. ; Zhou Z. ; Yu G. T. ; Chen W. ; Chen Z. F. J. Phys. Chem. C 2010, 114 (14), 6250.
7 Lim D. H. ; Negreira A. S. ; Wilcox J. J. Phys. Chem. C 2011, 115 (18), 8961.
8 Xu J. ; Wang Y. J. ; Zhu Y. F. Langmuir 2013, 29 (33), 10566.
9 Wang X. C. ; Maeda K. ; Chen X. F. ; Takanabe K. ; Domen K. ; Hou Y. D. ; Fu X. Z. ; Antonietti M. J. Am. Chem. Soc. 2009, 131 (5), 1680.
10 Zhu J. J. ; Xiao P. ; Li H. L. ; Carabineiro S. A. C. ACS Appl. Mater. Interfaces 2014, 6 (19), 16449.
11 Wang X. C. ; Blechert S. ; Antonietti M. ACS Catal. 2012, 2 (8), 1596.
12 Thomas A. ; Fischer A. ; Goettmann F. ; Antonietti M. ; Muller J. O. ; Schlogl R. ; Carlsson J. M. J. Mater. Chem. 2008, 18 (41), 4893.
13 Zhang Z. H. ; Leinenweber K. ; Bauer M. ; Garvie L. A. J. ; McMillan P. F. ; Wolf G. H. J. Am. Chem. Soc. 2001, 123 (32), 7788.
14 Li X. H. ; Zhang J. S. ; Chen X. F. ; Fischer A. ; Thomas A. ; Antonietti M. ; Wang X. C. Chem. Mater. 2011, 23 (19), 4344.
15 Jürgens B. ; Irran E. ; Senker J. ; Kroll P. ; Müller H. ; Schnick W. J. Am. Chem. Soc. 2003, 125 (34), 10288.
16 Wang X. C. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nature Materials 2009, 8 (1), 76.
17 Wirth J. ; Neumann R. ; Antonietti M. ; Saalfrank P. Phys. Chem. Chem. Phys. 2014, 16 (30), 15917.
18 Goettmann F. ; Thomas A. ; Antonietti M. Angew. Chem. Int. Edit. 2007, 46 (15), 2717.
19 Lin J. L. ; Pan Z. M. ; Wang X. C. ACS Sustainable Chemistry & Engineering 2014, 2 (3), 353.
20 Aijaz A. ; Fujiwara N. ; Xu Q. J. Am. Chem. Soc. 2014, 136 (19), 6790.
21 Huang Z. J. ; Li F. B. ; Chen B. F. ; Lu T. ; Yuan Y. ; Yuan G. Q. Applied Catalysis B: Environmental 2013, 136-137, 269.
22 Dong F. ; Wang Z. Y. ; Sun Y. J. ; Ho W. K. ; Zhang H. D. J. Colloid Interface Sci., 2013, 401, 70.
23 Tahir M. ; Cao C. B. ; Mahmood N. ; Butt F. K. ; Mahmood A. ; Idrees F. ; Hussain S. ; Tanveer M. ; Ali Z. ; Aslam I. ACS Appl. Mater. Interfaces 2014, 6 (2), 1258.
24 Shiraishi Y. ; Kanazawa S. ; Sugano Y. ; Tsukamoto D. ; Sakamoto H. ; Ichikawa S. ; Hirai T. ACS Catal. 2014, 4 (3), 774.
25 Cao S.W. ; Yu J. G. J. Phys. Chem. Lett. 2014, 5 (12), 2101.
26 Chen X. F. ; Jun Y. S. ; Takanabe K. ; Maeda K. ; Domen K. ; Fu X. Z. ; Antonietti M. ; Wang X. C. Chem. Mater. 2009, 21 (18), 4093.
27 Unni S. M. ; Illathvalappil R. ; Gangadharan P. K. ; Bhange S. N. ; Kurungot S. Chem. Commun. 2014, 50 (89), 13769.
28 Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Z. Energy & Environmental Science 2012, 5 (5), 6717.
29 Zheng Y. ; Jiao Y. ; Chen J. ; Liu J. ; Liang J. ; Du A. J. ; Zhang W. M. ; Zhu Z. H. ; Smith S. C. ; Jaroniec M. ; Lu G. Q. ; Qiao S. Z. J. Am. Chem. Soc. 2011, 133 (50), 20116.
30 Kattel S. ; Atanassov P. ; Kiefer B. Phys. Chem. Chem. Phys. 2013, 15 (1), 148.
31 Mansor N. ; Jorge A. B. ; Corà F. ; Gibbs C. ; Jervis R. ; McMillan P. F. ; Wang X. ; Brett D. J. J. Phys. Chem. C 2014, 118 (13), 6831.
32 Zhu J. J. ; Wei Y. C. ; Chen W. K. ; Zhao Z. ; Thomas A. Chem. Commun. 2010, 46 (37), 6965.
33 Ma X. G. ; Lv Y. H. ; Xu J. ; Liu Y. F. ; Zhang R. Q. ; Zhu Y. F. J. Phys. Chem. C 2012, 116 (44), 23485.
34 Delley B. Phys. Rev. B 2002, 66 (15), 155125.
35 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77 (18), 3865.
36 Stampfl C. ; Van deWalle C. G. Phys. Rev. B 1999, 59 (8), 5521.
37 Heyd J. ; Scuseria G. E. J. Chem. Phys. 2004, 121 (3), 1187.
38 Heyd J. ; Peralta J. E. ; Scuseria G. E. ; Martin R. L. J. Chem. Phys. 2005, 123 (17), 174101.
39 Pan H. ; Zhang Y.W. ; Shenoy V. B. ; Gao H. J. ACS Catal. 2011, 1 (2), 99.
40 Bojdys M. J. ; Müller J. O. ; Antonietti M. ; Thomas A. Chem. Eur. J. 2008, 14 (27), 8177.
41 Teter D. M. ; Hemley R. J. Science 1996, 271 (5245), 53.
42 Xu Y. ; Gao S. P. Int. J. Hydrogen Energy 2012, 37 (15), 11072.
43 Wu F. ; Liu Y. F. ; Yu G. X. ; Shen D. F. ; Wang Y. L. ; Kan E. J. J. Phys. Chem. Lett. 2012, 3 (22), 3330.
44 Wu H. Z. ; Liu L. M. ; Zhao S. J. Phys. Chem. Chem. Phys. 2014, 16 (7), 3299.
45 Mattesini M. ; Matar S. F. ; Etourneau J. J. Mater. Chem. 2000, 10 (3), 709.
46 Khabashesku V. N. ; Zimmerman J. L. ; Margrave J. L. Chem. Mater. 2000, 12 (11), 3264.
47 Lim D. H. ; Wilcox J. J. Phys. Chem. C 2011, 115 (46), 22742.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[9] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[10] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[11] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[12] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[13] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[14] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[15] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.