Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (6): 1330-1346    DOI: 10.3866/PKU.WHXB201603073
REVIEW     
Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells
Xue ZHANG1,Yang HAN1,Shuang-Zhi CHAI1,Nan-Tao HU1,Zhi YANG1,*(),Hui-Juan GENG2,*(),Hao WEI1,*()
1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
2 College of Physics and Electronic Engineering, Anyang Normal University, Anyang 455000, Henan Province, P. R. China
Download: HTML     PDF(15424KB) Export: BibTeX | EndNote (RIS)      

Abstract  

CdTe and Cu(In,Ga)(S,Se)2 (CIGSSe) light absorber materials have dominated the research field of compound semiconductor solar cells. Despite the high power conversion efficiencies and technological advances of CdTe and CIGS photovoltaic technologies, certain issues, like rare earth constituent elements or toxic elements, limit their future upscaled applications. In recent years, Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells have become research hotspots, drawing increased interest. With earth-abundant and environmentallybenign constituent elements, CZTSSe light absorber materials are widely regarded as the next-generation photovoltaic technology that can replace CdTe and CIGS as a promising candidate for terawatt-level power output. In this review, the synthesis, structure, and properties of CZTSSe materials will be discussed. This review will primarily demonstrate the developments and recent advances of different fabrication techniques and deposition methods, such as vacuum-based and solution-based deposition methods, covering their advantages and disadvantages. Recent developments in CZTSSe fabrication methods and CZTSSe nanocrystal preparation approaches will also be reviewed. Finally, some limitations on CZTSSe photovoltaic technology will be analyzed, and directions for improvement will be suggested, helping scientists to make future developments in this field.



Key wordsCu2ZnSn(S,Se)4      Thin film      Solar cell      Preparation method      Research progress     
Received: 18 January 2016      Published: 07 March 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(61376003)
Corresponding Authors: Zhi YANG,Hui-Juan GENG,Hao WEI     E-mail: zhiyang@sjtu.edu.cn;ghjhou@126.com;haowei@sjtu.edu.cn
Cite this article:

Xue ZHANG,Yang HAN,Shuang-Zhi CHAI,Nan-Tao HU,Zhi YANG,Hui-Juan GENG,Hao WEI. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells. Acta Physico-Chimica Sinca, 2016, 32(6): 1330-1346.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603073     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1330

Fig 1 Illustration of different crystal structures of CZTS18 (a) KS: Kesterite structure; (b) ST: Stannite structure
Preparation method Thin film Transfer efficiency/% Voc/mV Jsc/(mA?cm-2) Reference
spray pyrolysis pyrolysis CZTSe 5.14 370.4 27.29 37
sputtering CZTSSe 8.06 410 36.1 38
evaporation CZTSe 8.4 661 19.5 39
pulsed laser deposition CZTS 4.13 700 10.01 40
electro-chemical deposition CZTSe 8.0 390 35.3 41
sol-gel deposition technique CZTS 5.1 610 14.82 42
solution-processed approaches CZTSSe 11.1 459.8 34.5 16
screen printing CZTS 0.49 386 4.76 43
Table 1 Performance comparison of CZTSe/CZTS/CZTSSe thin film solar cells by different preparation methods
Fig 2 Illustration of the structure and performance of thin film solar cell by evaporation39 (a) bright field TEM image of CZTS solar cell; (b) J-V characterization curves, under 1.5 AM (red curve) and under dark (blue curve); (c) external quantum efficiency, measured at 0 V (blue curve) and at a reverse bias (-1 V, red curve). color online. TCO: transparent conducting oxide; CZTS: Cu2ZnSnS4; EQE: external quantum efficiency; η: efficiency of Cu2ZnSnS4 solar cell
Fig 3 Cross-sectional FE-SEM images of the CZTSSe solar cell at two different magnifications71 (a) bright field TEM image of CZTS solar cell; (b) J-V characterization curves, under 1.5 AM (red curve) and under dark (blue curve); (c) external quantum efficiencies, measured at 0 V (blue curve) and at a reverse bias (-1 V, red curve). color online. CZTSSe: copper-zinc-tin-chalcogenide
Fig 4 Illustration of structure and performance of thin film solar cell by electrochemical deposition85 (a) SEM image of cross section of thin film; (b) J-V characterization curve; (c) EQE of the device. LJV: light current-voltage curve; DJV: dark current-voltage curve
Fig 5 Surface and cross-sectional SEM images of the films under different sulfurization temperatures86 (a, e) before sulfurization and after sulfurization under H2S flow at (b, f) 450 ℃, (c, g) 500 ℃, and (d, h) 550 ℃
Fig 6 Surface SEM images of thin films produced from sol-gel solutions with different chemical mole compositions88
Fig 7 Illustration of the formation of the CZTS thin films via thermal decomposition and reaction by the sol-gel route42
Fig 8 SEM images of the prepared CZTSSe flims and J-V curves for the best performing cell in darkness and under AM1.5 illumination92
Fig 9 Illustration of structure and performance of thin film solar cell by solution phase method15 (a) SEM images of surface morphology and cross section of thin film; (b) J-V characterization curve; (c) external quantum efficiencies. FF: fill factor
Fig 10 Illustration of structure and performance of thin film solar cell by screen printing43 (a) SEM image of surface morphology of thin film; (b) band gap of thin film; (c) J-V characterization curve (inset: structure of thin film solar cell)
1 Hsu C. J. ; Duan H. S. ; Yang W. B. ; Yang Y. Adv. Energy Mater. 2014, 4
2 Cai Q. ; Liang X. J. ; Zhong J. S. ; Shao M. G. ; Wang Y. ; Zhao X. W. ; Xiang W. D. Acta Phys. -Chim. Sin. 2011, 27, 2920.
2 蔡倩; 梁晓娟; 钟家松; 邵明国; 王芸; 赵肖为; 向卫东. 物理化学学报, 2011, 27, 2920.
3 Huang F. Q. ; Yang C. Y. ; Wan D. Y. Front. Phys. 2011, 6, 177.
4 Siebentritt S. Thin Solid Films 2013, 535, 1.
5 Shockley W. ; Queisser H. J. J. Appl. Phys. 1961, 32 (3), 510.
6 Walsh A. ; Chen S. Y. ; Wei S. H. ; Gong X. G. Adv. Energy Mater. 2012, 2, 400.
7 Bai X. G. ; Shi Y. T. ; Wang K. ; Dong Q. S. ; Xing Y. J. ; Zhang H. ; Wang L. ; Ma T. L. Acta Phys. -Chim. Sin. 2015, 31, 285.
7 白晓功; 史彦涛; 王开; 董庆顺; 邢玉瑾; 张鸿; 王亮; 马延丽. 物理化学学报, 2015, 31, 285.
8 Fan Y. ; Qin H.L. ; Mi B. X. ; Gao Z. Q. ; Huang W. Acta Chim. Sin. 2014, 72, 643.
8 范勇; 秦宏磊; 密保秀; 高志强; 黄维. 化学学报, 2014, 72, 643.
9 http://www.nrel.gov/ncpv.
10 Ito K. ; Nakazawa T. J. Appl. Phys. 1988, 27, 2094.
11 Friedlmeier, T. M.; Wieser, N.; Walter, T.; Dittrich, H.; Schock, H. W. Heterojuncitons Based on Cu2ZnSnS4 and Cu2ZnSnSe4 Thin Films. Proceedings of the 14th European Photovoltaic Solar Energy Conference, Bedford, UK, 1997.
12 Katagiri H. ; Saitoh K. ; Washio T. ; Shinohara H. ; Kurumadani T. ; Miyajima S. Sol. Energy Mater. Sol. Cells 2001, 65, 141.
13 Katagiri H. ; Jimbo K. ; Yamada S. ; Kamimura T. ; Maw W. S. ; Fukano T. ; Ito T. ; Motohiro T. Appl. Phys. Express. 2008, 1, 2.
14 Todorov T. K. ; Reuter K. B. ; Mitzi D. B. Adv. Mater. 2010, 22, E156.
15 Bag S. ; Gunawan O. ; Gokmen T. ; Zhu Y. ; Todorov T. K. ; Mitzi D. B. Energy Environ. Sci. 2012, 5, 7060.
16 Todorov T. K. ; Tang J. ; Bag S. ; Gunawan O. ; Gokmen T. ; Zhu Y. ; Mitzi D. B. Adv. Energy Mater. 2013, 3, 34.
17 Winkler M. T. ; Wang W. ; Gunawan O. ; Hovel H. J. ; Todorov T. K. ; Mitzi D. B. Energy Environ. Sci. 2014, 7, 1029.
18 Siebentritt S. ; Kesterites S. S. Prog Photovolt Res. Appl. 2012, 20, 512.
19 Oliveira T. A. ; Coutinho J. ; Torres V. J. B. Thin Solid Films 2013, 535, 311.
20 Zhao Z. Y. ; Ma C. S. ; Cao Y. C. ; Yi J. ; He X. J. ; Qiu J. B. Phys. Lett. A. 2013, 377, 417.
21 Chen S. Y. ; Walsh A. ; Gong X. J. Appl. Phys. Lett. 2009, 94, 041903.
22 Tan J. M. R. ; Lee Y. H. ; Pedireddy S. ; Baikie T. ; Ling X. Y. J. Am. Chem. Soc. 2014, 136, 6684.
23 Yu K. ; Carter E. A. Chem. Mater. 2015, 27, 2920.
24 Grossberg M. ; Krustok J. ; Timmo K. ; Altosaar M. Thin Solid Films 2009, 517, 2489.
25 Krustok J. ; Josepson R. ; Raadik T. ; Danilson M. Phys. B: Condens. Matter. 2010, 405, 3186.
26 Winkler M. T. ; Wang W. ; Gunawan O. ; Hovel H. J. ; Todorova T. K. ; Mitzi D. B. Energy Environ. Sci. 2014, 7, 1029.
27 Tsega M. ; Kuo D. H. J. Alloy. Compd. 2013, 580, 217.
28 Lin X. Z. ; Ennaoui A. ; Levcenko S. ; Dittrich T. ; Kavalakkatt J. ; Kretzschmar S. ; Unold T. ; Lux-Steiner M. C. Appl. Phys. Lett. 2015, 106, 013903.
29 Kumar M. ; Zhao H. Y. ; Persson C. Thin Solid Films 2013, 535, 318.
30 Kask E. ; Grossberg M. ; Josepson R. ; Salu P. ; Timmo K. ; Krustok J. Mater. Sci. Semicond. Process. 2013, 16, 992.
31 Gokmen T. ; Gunawan O. ; Todorov T. K. ; Mitzi D. B. Appl. Phys. Lett. 2013, 103, 103506.
32 Duan H. S. ; Yang W. B. ; Bob B. ; Hsu C. J. ; Lei B. ; Yang Y. Adv. Funct. Mater. 2013, 23, 1466.
33 Su C. Y. ; Chiu C. Y. ; Ting J. M. Sci. Rep. 2015, 5, 9291.
34 Li J. ; Mitzi D. B. ; Shenoy V. B. ACS Nano 2011, 5, 8613.
35 Zhou H. P. ; Song T. B. ; Hsu W. C. ; Luo S. ; Ye S. L. ; Duan H. S. ; Hsu C. J. ; Yang W. B. ; Yang Y. J. Am. Chem. Soc. 2013, 135, 15998.
36 Harvey S. P. ; Repins I. ; Teeter G. J. Appl. Phys. 2015, 117, 074902.
37 Zeng X. ; Tai K. F. ; Zhang T. L. ; Ho C. W. J. Sol. Energy Mater. Sol. Cells 2014, 124, 55.
38 Kim G. Y. ; Jeong A. R. ; Kim J. R. ; Jo W. ; Son D. H. ; Kim D. H. ; Kang J. K. Sol. Energy Mater. Sol. Cells 2014, 127, 129.
39 Shin B. ; Gunawan O. ; Zhu Y. ; Bojarczuk N. A. ; Chey S. J. ; Guha S. Prog. Photovolt: Res. Appl. 2013, 21, 72.
40 Moholkar A. V. ; Shinde S. S. ; Agawane G. L. ; Jo S. H. ; Rajpure K. Y. ; Patil P. S. ; Bhosale C. H. ; Kim J. H. J. Alloy. Compd. 2012, 544, 145.
41 Jeon J. O. ; Lee K. D. ; Oh L. S. ; Seo S. W. ; Lee D. K. ChemSusChem 2014, 7, 1073.
42 Su Z. H. ; Sun K. ; Han Z. L. ; Cui H. T. ; Liu F. Y. ; Lai Y. Q. J. Mater. Chem. A. 2014, 2, 500.
43 Zhou Z. H. ; Wang Y. Y. ; Xu D. ; Zhang Y. F. Sol. Energy Mater. Sol. Cells 2010, 94, 2042.
44 Nakayama N. ; Ito K. Appl. Surf. Sci. 1996, 92, 171.
45 Kamoun N. ; Bouzouita H. ; Rezig B. Thin Solid Films 2007, 515, 5949.
46 Kumar Y. B. K. ; Babu G. S. ; Bhaskar P. U. ; Raja V. S. Sol. Energy Mater. Sol. Cells 2009, 93, 1230.
47 Khadka D. B. ; Kim S. Y. ; Kim J. H. J. Phys. Chem. C. 2015, 119, 12226.
48 Vigil-Galán O. ; Courel M. ; Espindola-Rodriguez M. ; Jiménez-Olarte D. ; Aguilar-Frutis M. ; Saucedo E. Sol. Energy Mater. Sol. Cells 2015, 132, 557.
49 Kemell M. ; Ritala M. ; Leskel? M. Crit. Rev. Solid State Mater. Sci. 2005, 30, 1.
50 Takeya H. ; Kato R. ; Wakahara T. ; Miyazawa K. ; Yamaguchi T. ; Ozaki T. ; Okazaki H. ; Takano Y. Mater. Res. Bull. 2013, 48, 343.
51 Wang K. ; Shin B. ; Reuter K. B. ; Todorov T. ; Mitzi D. B. ; Guha S. Appl. Phys. Lett. 2011, 98, 051912.
52 Katagiri H. ; Sasaguchi N. ; Hando S. ; Hoshino S. ; Ohashi J. ; Yokota T. Sol. Energy Mater. Sol. Cells 1997, 49, 407.
53 Tanaka T. ; Kawasaki D. ; Nishio M. ; Guo Q. ; Ogawa H. Phys. Status Sol. 2006, 3, 2844.
54 Schubert B. A. ; Marsen B. ; Cinque S. ; Unold T. ; Klenk R. ; Schorr S. ; Schock H. W. Prog. Photovolt: Res. Appl. 2011, 19, 93.
55 Redinger A. ; Berg D.M. ; Dale P. J. ; Djemour R. ; Gütay L. ; Eisenbarth T. ; Valle N. ; Siebentritt S. IEEE J. Photovoltaics 2011, 2, 200.
56 Jung S. H. ; Gwak J. ; Yun J. H. ; Ahn S. J. ; Nam D. ; Cheong H. ; Ahn S. ; Cho A. ; Shin K. S. ; Yoon K. H. Thin Solid Films 2013, 535, 52.
57 Tulugan K. ; Kim H. ; Park W. ; Choi Y. B. ; Park W. J. Alloy. Compd. 2013, 579, 279.
58 Sun D. ; Xu S. Z. ; Zhang L. ; Chen Z. ; Ge Y. ; Wang N. ; Liang X. J. ; Wei C. C. ; Zhao Y. ; Zhang X. D. J. Semicond. 2015, 36, 044009.
59 Ito K. ; Nakazawa T. Jpn. J. Appl. Phys. 1988, 27, 2094.
60 Seol J. S. ; Lee S. Y. ; Kim K. H. Sol. Energy Mater. Sol. Cells 2003, 75, 155.
61 Johnson M. C. ; Wrasman C. ; Zhang X. ; Manno M. ; Leighton C. ; Aydil E. S. Chem. Mater. 2015, 27, 2507.
62 Tanaka T. ; Nagatomo T. ; Kawasaki D. ; Nishio M. ; Guo Q. X. ; Wakahara A. ; Yoshida A. ; Ogawa H. J. Phys. Chem. Solids 2005, 66, 1978.
63 Liu F. Y. ; Li Y. ; Zhang K. ; Wang B. ; Lai Y. Q. ; Zhang Z. ; Liu Y. L. Sol. Energy Mater. Sol. Cells 2010, 94, 2431.
64 Katagiri H. ; Jimbo K. ; Maw W. S. Thin Solid Films 2009, 517, 2455.
65 Jimbo K. ; Kimura R. ; Kamimura T. ; Maw W. S. ; Araki H. ; Oishi K. ; Katagiri H. Thin Solid Films 2007, 515, 5997.
66 Katagiri H. ; Jimbo K. ; Yamada S. ; Kamimura T. ; Maw W. S. ; Fukano T. ; Ito T. ; Motohiro T. Appl. Phys. Express. 2008, 1, 041201.
67 Shin S. W. ; Kim I. Y. ; Gurav K. V. ; Jeong C. H. ; Yun J. H. ; Patil P. S. ; Lee J. Y. ; Kim J. H. Curr. Appl. Phys. 2013, 13, 1837.
68 Wibowo R. A. ; Yoo H. ; H?lzing A. ; Lechner R. ; Jost S. ; Palm J. ; Gowtham M. ; Louis B. ; Hock R. Thin Solid Films 2013, 535, 57.
69 Byun J. S. ; Kim T. J. ; Hwang S. Y. ; Kang Y. R. ; Park J. C. ; Kim Y. D. Thin Solid Films 2014, 558, 438.
70 Lechner R. ; Jost S. ; Palm J. ; Gowtham M. ; Sorin F. ; Louis B. ; Yoo H. ; Wibowo R. A. Thin Solid Films 2013, 535, 5.
71 Yang H. S. ; Agawane G. ; Shin S. W. ; Vanalakar S. ; Jung W. L. ; Kim J. H. Phys. Stat. Sol. A. 2015, 12, 708.
72 Sekiguchi K. ; Tanaka K. ; Moriya K. ; Uchiki H. Phys. Stat. Sol. C. 2006, 3, 2618.
73 Moriya K. ; Tanaka K. ; Uchiki H. Jpn. J. Appl. Phys. 2007, 46, 5780.
74 Wibowo R. A. ; Lee E. S. ; Munir B. ; Kim K. H. Phys. Stat. Sol. A. 2007, 204, 3373.
75 He J. ; Sun L. ; Ding N. ; Kong H. ; Zuo S. ; Chen S. ; Chen Y. ; Yang P. ; Chu J. J. Alloy. Compd. 2012, 529, 34.
76 Scragg J. J. ; Dale P. J. ; Peter L. M. ; Forbes I. Phys. Stat. Sol. 2008, 245, 1772.
77 Araki H. ; Kubo Y. ; Mikaduki A. ; Jimbo K. ; Maw W. S. ; Katagiri H. ; Yamazaki M. ; Oishi K. ; Takeuchi A. Sol. Energy Mater. Sol. Cells 2009, 93, 996.
78 Chan H. Y. ; Nordlund K. ; Gossmann H. J. L. ; Harris M. ; Montgomery N. J. ; Mulcahy C. P. A. ; Srinivasan M. P. Thin Solid Films 2006, 504, 121.
79 Pawar S. M. ; Pawar B. S. ; Moholkar A. V. ; Choi D. S. ; Yun J. H. ; Moon J. H. ; Kim J. H. Electrochim. Acta 2010, 55, 4057.
80 Scragg J. J. ; Berg D. M. ; Dale P. J. J. Electroanal. Chem. 2010, 646, 52.
81 Araki H. ; Kubo Y. ; Jimbo K. ; Maw W. S. ; Katagiri H. ; Yamazaki M. ; Oishi K. ; Takeuchi A. Phys. Stat. Sol. 2009, 6, 1266.
82 Ennaoui A. ; Schurr R. ; H?lzing A. ; Jost S. ; Hock R. ; Voβ T. ; Schulze J. ; Kirbs A. Thin Solid Films 2009, 517, 2511.
83 Iljina J. ; Zhang R. ; Ganchev M. ; Raadik T. ; Volobujeva O. ; Altosaar M. ; Traksmaa R. ; Mellikov E. Thin Solid Films 2013, 537, 85.
84 Iljina J. ; Volobujeva O. ; Raadik T. ; Raudoja J. Thin Solid Films 2013, 535, 14.
85 Ahmed S. ; Reuter K. B. ; Gunawan O. ; Guo L. ; Romankiw L. T. ; Deligianni H. Adv. Energy Mater. 2012, 2, 253.
86 Septina W. ; Ikeda S. ; Kyoraiseki A. ; Matsumura M. Electrochim. Acta 2013, 88, 436.
87 Miyamoto Y. ; Tanaka K. ; Oonuki M. ; Moritake N. ; Uchiki H. Jpn. J. Appl. Phys. 2008, 47, 596.
88 Tanaka K. ; Fukui Y. ; Moritake N. ; Uchiki H. Sol. Energy Mater. Sol. Cells 2011, 95, 838.
89 Todorov T. ; Kita M. ; Carda J. ; Escribano P. Thin Solid Films 2009, 517, 2541.
90 Fischereder A. ; Rath T. ; Haas W. ; Amenitsch H. ; Albering J. ; Meischler D. ; Larissegger S. ; Edler M. ; Saf R. ; Hofer F. ; Trimmel G. Chem. Mater. 2010, 22, 3399.
91 Ki W. ; Hillhouse H. W. Adv. Energy Mater. 2011, 1, 732.
92 Zhang R. ; Szczepaniak S. M. ; Carter N. J. ; Handwerker C. A. ; Agrawal R. ; Versatile A. Chem. Mater. 2015, 27, 2114.
93 Jiang M. ; Tao Q. ; Lan F. ; Bottenfield C. G. ; Yan X. ; Li G. J. Photon. Energy 2015, 5, 053096.
94 Barkhouse D. A. R. ; Gunawan O. ; Gokmen T. ; Todorov T. K. ; Mitzi D.B. Prog. Photovolt: Res. Appl. 2012, 20, 6.
95 Suntola, T.; Antson, J. Method for Producing Compound Thin Films. US Patent 4058430, 1977.
96 Niinist? L. ; Nieminen M. ; P?iv?saari J. ; Niinist? J. ; Putkonen M. ; Nieminen M. Phys. Stat. Sol. A. 2004, 201, 1443.
97 Thimsen E. ; Riha S. C. ; Baryshev S. V. ; Martinson A. B. F. ; Elam J. W. ; Pellin M. J. Chem. Mater. 2012, 24, 3188.
98 Kaigawa R. ; Hirata S. ; Sasaki M. ; Klenk R. Phys. Stat. Sol. B. 2013, 10, 1012.
99 Zhou H. P. ; Hsu W. C. ; Duan H. S. ; Bob B. ; Yang W. B. ; Song T. B. ; Hsu C. J. ; Yang Y. Energy Environ. Sci. 2013, 6, 2822.
100 Aldakov D. ; Lefran?ois A. ; Reiss P. J. Mater. Chem. C. 2013, 1, 3756.
101 Collord A. D. ; Hillhouse H. W. Chem. Mater. 2015, 27, 1855.
102 Guo Q. ; Ford G. M. ; Yang W. C. ; Walker B. C. ; Stach E. A. ; Hillhouse H. W. ; Agrawal R. J. Am. Chem. Soc. 2010, 132, 17384.
103 Lu X. T. ; Zhuang Z. B. ; Peng Q. ; Li Y. D. Chem. Commun. 2011, 47, 3141.
104 Singh A. ; Geaney H. ; Laffir F. ; Ryan K. M. J. Am. Chem. Soc. 2012, 134, 2910.
105 Regulacio M. D. ; Ye C. ; Lim S. H. ; Bosman M. ; Ye E. ; Chen S. ; Xu Q. H. ; Han M. Y. Chem. Eur. J. 2012, 18, 3127.
106 Khare A. ; Wills A. W. ; Ammerman L. M. ; Norris D. J. ; Aydil E. S. Chem. Commun. 2011, 47, 11721.
107 Wei H. ; Guo W. ; Sun Y. ; Yang Z. ; Zhang Y. F. Mater. Lett. 2010, 64, 1424.
108 Wei H. ; Ye Z. C. ; Li M. ; Su Y. J. ; Yang Z. ; Zhang Y. F. CrystEngComm 2011, 13, 2222.
109 Li M. ; Zhou W. H. ; Guo J. ; Zhou Y. L. ; Hou Z. L. ; Jiao J. ; Zhou Z. J. ; Du Z. L. ; Wu S. X. J. Phys. Chem. C. 2012, 116, 26507.
110 Kang C. C. ; Chen H. F. ; Yu T. C. ; Lin T. C. Mater. Lett. 2013, 96, 24.
111 Liu W. ; Guo B. ; Mak C. ; Li A. ; Wu X. ; Zhang F. Thin Solid Films 2013, 535, 39.
112 Shin S. W. ; Han J. H. ; Park C. Y. ; Moholkar A. V. ; Lee J. Y. ; Kim J. H. J. Alloy. Compd. 2012, 516, 96.
113 Shin S. W. ; Han J. H. ; Park Y. C. ; Agawane G. L. ; Jeong C. H. ; Yun J. H. ; Moholkar A. V. ; Lee J. Y. ; Kim J. H. J. Mater. Chem. 2012, 22, 21727.
114 Flynn B. ; Wang W. ; Chang C. H. ; Herman G. S. Phys. Stat. Sol. A. 2012, 209, 2186.
115 Guo Q. J. ; Ford G. M. ; Yang W. C. ; Hages C. J. ; Hillhouse H. W. ; Agrawal R. Sol. Energy Mater. Sol. Cells 2012, 105, 132.
[1] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 424-436.
[2] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 344-347.
[3] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 391-406.
[4] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[5] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1730-1751.
[6] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[7] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1379-1389.
[8] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.
[9] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.
[10] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 314-328.
[11] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[12] Hai-Fei WU,Yao CHEN,Shan-Hu XU,Yong-Hong YAN,Jian-Xiao SI,Yong-Sheng TAN. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 419-425.
[13] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2523-2531.
[14] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[15] Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2064-2071.