Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (5): 1056-1061    DOI: 10.3866/PKU.WHXB201603092
COMMUNICATION     
Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping
Zu-Guang YANG1,2,Wei-Bo HUA1,Jun ZHANG2,Jiu-Hua CHEN2,Feng-Rong HE2,Ben-He ZHONG1,Xiao-Dong GUO1,3,*()
1 School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
2 Dongguan Hec Technology Research Corporation, Dongguan 523871, Guangdong Province, P. R. China
3 Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong NSW 2522, Australia
Download: HTML     PDF(4260KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In order to ameliorate the severe capacity fading of LiNi0.5Co0.2Mn0.3O2 cathode materials at elevated temperatures, a Zr-doping strategy was performed via a solid-state method, and the influence of the doping content on the structural and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 was studied. The results indicate that the Li+/Ni2+ cation mixing can be reduced and the electrochemical performance, especially the hightemperature cycling performance, can be improved when the doping content of zirconium is 0.01. After 95 cycles, the capacity retention of Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 is 92.13% at 1C between 3.0 and 4.3 V, which is higher than that of the LiNi0.5Co0.2Mn0.3O2 (87.61%). When cycling at 55 ℃, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 exhibits a capacity retention of 82.96% after 115 cycles at 1C, while that of the bare sample remains at only 67.63%. Therefore, a small amount of zirconium doping is notably beneficial to the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 at elevated temperatures.



Key wordsLithium-ion battery      Cathode material      LiNi0.5Co0.2Mn0.3O2      Zr-doping      High-temperature cycle performance     
Received: 28 December 2015      Published: 09 March 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21506133); (2014GZ0077)
Corresponding Authors: Xiao-Dong GUO     E-mail: xiaodong2009@scu.edu.cn
Cite this article:

Zu-Guang YANG,Wei-Bo HUA,Jun ZHANG,Jiu-Hua CHEN,Feng-Rong HE,Ben-He ZHONG,Xiao-Dong GUO. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping. Acta Physico-Chimica Sinca, 2016, 32(5): 1056-1061.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603092     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I5/1056

Fig 1 X-ray diffraction (XRD) patterns of the Li[Ni0.5Co0.2Mn0.3]1-xZrxO2 (x = 0, 0.005, 0.01, 0.02) samples
Sample a/nm c/nm V/nm3 I(003)/I(104)
LNCM-bare 0.28673 1.42221 0.10126 1.7115
LNCM-Zr0.5% 0.28677 1.42242 0.10131 1.7490
LNCM-Zr1% 0.28679 1.42265 0.10134 1.8976
LNCM-Zr2% 0.28688 1.42319 0.10144 1.6191
Table 1 Crystallographic data of the Li[Ni0.5Co0.2Mn0.31-xZrxO2 samples
Fig 2 Scanning electron microscopy (SEM) images of LNCM-bare (a, b) and LNCM-Zr(1%) (c, d)
Fig 3 Energy dispersive X-ray spectroscopy (EDS) of LNCM-Zr(1%)
Fig 4 Electrical performance diagrams of Li[Ni0.5Co0.2Mn0.3]1-xZrxO2 (x =0, 0.005, 0.01, 0.02) with different conditions
Fig 5 X-ray photoelectron spectroscopy (XPS) fitting spectra of Ni in Li[Ni0.5Co0.2Mn0.3]1-xZrxO2 (x = 0, 0.01)
Fig 6 SEM images of LNCM-bare (a, b) and LCNM-Zr(1%) (c, d) after 115 cycles
Fig 7 dQ/dV plots of LNCM-bare and LNCM-Zr(1%) cycling 1st, 50 th, 115 th at 55 ℃ and 1 C
1 Thackeray M. M. ; Wolverton C. ; Isaacs E. D. Energy Environ. Sci. 2012, 5, 7854.
2 Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
3 Stanley M. Whittingham. Chem. Rev. 2004, 104, 4271.
4 Wu K. C. ; Wang F. ; Gao L. L. ; Li R. M. ; Xiao L. L. ; Zhao L. T. ; Hu J. S. ; Wang X. J. ; Xu Z. L. ; Wu Q. G. Electrochim. Acta 2012, 75, 393.
5 Yang S. Y. ; Wang X. Y. ; Yang K. X. ; Bai Y. S. ; Liu Z. L. ; Shu H. B. ; Wei Q. L. Electrochim. Acta 2012, 66, 88.
6 Noh M. ; Cho J. J. Electrochem. Soc. 2013, 160, A105.
7 Liu W. ; Oh P. ; Liu X. ; Lee M. J. ; Cho W. ; Chae S. ; Kim Y. ; Cho J. Angew. Chem. Int. Edit. 2015, 54, 4440.
8 Arorat P. ; White R. E. ; Doyle M. J. Electrochem. Soc. 1998, 145, 3647.
9 Aurbach D. J. Power Sources 2003, 119, 497.
10 Wu Z. Z. ; Han X. G. ; Zheng J. X. ; Wei Y. ; Qiao R. ; Shen F. ; Dai J. Q. ; Hu L. B. ; Xu K. ; Lin Y. ; Yang W. L. ; Pan F. Nano Lett. 2014, 14, 4700.
11 Hua W. B. ; Zhang J. B. ; Zheng Z. ; Liu W. Y. ; Peng X.H. ; Guo X. D. ; Zhong B. H. ; Wang Y. J. ; Wang X. L. Dalton Trans. 2014, 43, 14824.
12 Aurbach D. ; Lavi O. S. ; Ghanty C.; Dixit M. ; Haik O. ; Talianker M. ; Grinblat Y. ; Leifer N. ; Lavi R. J. Electrochem. Soc. 2015, 162, A1014.
13 Zhang Y. ; Wang Z. B. ; Lei J. ; Li F. F. ; Wu J. ; Zhang X. G. Ceramics International 2015, 41, 9069.
14 Zhu H. L. ; Xie T. ; Chen Z.Y. ; Li L. J. ; Xu M. ; Wang W. H. Electrochim. Acta 2014, 135, 77.
15 Wang D. ; Li X. H. ; Wang Z. X. ; Guo H. J. ; Xu Y. ; Fan Y. L. ; Ru J. J. Electrochim. Acta 2016, 188, 48.
16 Xia L. ; Qiu K. H. ; Gao Y. Y. ; He X. ; Zhou F. D. J. Mater. Sci. 2015, 50, 2914.
17 Kim S. H. ; Kim C. S. J. Electroceram. 2009, 23, 254.
18 Ding C. X. ; Bai Y. C. ; Feng X. Y. ; Chen C. H. Solid State Ionics 2011, 189, 69.
19 Lin B. ; Wen Z.Y. ; Gu Z. H. ; Xu X. X. J. Power Sources 2007, 174, 544.
20 He Z. J. ; Wang Z. X. ; Chen H. ; Huang Z. M. ; Li X. H. ; Guo H. J. ; Wang R. H. J. Power Sources 2015, 299, 334.
21 Hua W. B. ; Zheng Z. ; Li L.Y. ; Guo X. D. ; Liu H. ; Shen C. H. ; Wu Z. G. ; Zhong B. H. ; Huang L. Acta Phys. -Chim. Sin. 2014, 30, 1481.
21 滑纬博; 郑卓; 李龙燕; 郭孝东; 刘恒; 沈重亨; 吴振国; 钟本和; 黄令. 物理化学学报,, 2014, 30, 1481.
22 Li J. B. ; Xu Y. L. ; Du X. F. ; Sun X. F. ; Xiong L. L. Acta Phys. -Chim. Sin. 2012, 28, 1899.
22 李节宾; 徐友龙; 杜显锋; 孙孝飞; 熊礼龙. 物理化学学报,, 2012, 28, 1899.
23 Zhang X. Y. ; Jiang W. J. ; Mauger A. ; Gendron F. ; Julien C. M. J. Power Sources 2010, 195, 1292.
24 Wu Y. P. ; Rahm E. ; Holze R. Electrochim. Acta 2002, 47, 3491.
25 Cho Y. H. ; Oh P. ; Cho J. Nano Lett. 2013, 13, 1145.
26 Wang M. ; Chen Y. B. ; Wu F. ; Su Y. F. ; Chen L. Sci. China Tech. Sci. 2010, 53, 3214.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[4] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[5] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[6] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[7] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[8] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[9] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[10] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 18-27.
[11] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[12] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.
[13] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2293-2300.
[14] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1999-2006.
[15] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1866-1879.