Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (6): 1473-1481    DOI: 10.3866/PKU.WHXB201603112
ARTICLE     
New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids
Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN*()
Download: HTML     PDF(7489KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A new methanol-tolerant oxygen reduction electrocatalyst,nitrogen-doped hollow carbon microspheres@platinum nanoparticles hybrids (HNCMS@Pt NPs),has been synthesized by a facile template route.In brief,Pt NPs were loaded on the surface of NH2-functionalized SiO2 microspheres (Pt NPs/SiO2).Then, the Pt NPs/SiO2 hybrids were wrapped by polydopamine (PDA) film.After direct carbonization of PDA-wrapped Pt NPs/SiO2 hybrids under a nitrogen atmosphere and further treatment in a hydrofluoric acid solution,Pt NPs embedded within nitrogen-doped hollow carbon microsphere (HNCMS) were obtained and labeled as HNCMS@Pt NPs.Scanning electron microscopy,transmission electron microscopy,X-ray diffraction,Raman spectroscopy,specific surface area analysis,and X-ray photoelectron spectroscopy were used to characterize the HNCMS@Pt NPs hybrids.The electrochemical properties of the HNCMS@Pt NPs hybrids for oxygen reduction reaction have also been investigated by cyclic voltammetry and linear sweep voltammetry.The results show that the Pt loading mass in the HNCMS@Pt NPs hybrids is up to 11.9%(w,mass fraction).Furthermore, the as-prepared HNCMS@Pt NPs catalyst exhibits good electrocatalytic activity,high stability,and excellent methanol-tolerance toward oxygen reduction reactions,implying potential applications in practical direct 1473 methanol fuel cells (DMFCs) as methanol-tolerant cathodic catalysts.



Key wordsPt nanoparticle      Nitrogen-doping      Hollow carbon microsphere      Oxygen-reduction reaction      Methanol-tolerance     
Received: 15 January 2016      Published: 11 March 2016
MSC2000:  O646  
  O643  
Fund:  The project was supported by the Program for Changjiang Scholars and Innovative Research Team in University, China(IRT1238);NationalNatural Science Foundation of China(21275041, J1210040, J1103312);长江学者和创新团队发展计划(IRT1238);国家自然科学基金(21275041, J1210040, J1103312)
Corresponding Authors: Jin-Hua CHEN     E-mail: chenjinhua@hnu.edu.cn
Cite this article:

Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids. Acta Phys. -Chim. Sin., 2016, 32(6): 1473-1481.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603112     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1473

 
 
 
 
 
 
 
 
 
1 Wang H. ; Liang J. ; Zhu L. ; Peng F. ; Yu H. ; Yang J. Fuel Cells 2010, 10 (1), 99.
2 Li L. ; He X.L. ; Qin T. ; Dai F.T. ; Zhang X.H. ; Chen J.H. Acta Phys.-Chim.Sin 2015, 31 (5), 927.
2 李丽; 何小丽; 覃涛; 戴富涛; 张小华; 陈金华. 物理化学学报, 2015, 31 (5), 927.
3 Wang C. ; Kang J.X. ; Wang L.L. ; Chen T.W. ; Li J. ; Zhang D.F. ; Guo L. Acta Phys.-Chim.Sin 2014, 30 (4), 708.
3 王纯; 康建新; 王利利; 陈庭文; 李杰; 张东凤; 郭林. 物理化学学报, 2014, 30 (4), 708.
4 Cui Z.M. ; Chen H. ; Zhao M.T. ; MMarshall D. ; Yu Y.C. ; Abruna H. ; DiSalvo F.J. Am.Chem.Soc 2014, 136 (29), 10206.
5 Cui Y. ; Kuang Y.J. ; Zhang X.H. ; Liu B. ; Chen J.H. Acta Phys.-Chim.Sin 2013, 29 (5), 989.
5 崔颖; 匡尹杰; 张小华; 刘博; 陈金华. 物理化学学报, 2013, 29 (5), 989.
6 Zhou Y. ; Chu Y.Q. ; Liu W.M. ; Ma C.A. Acta Phys.-Chim.Sin 2013, 29 (2), 287.
6 周阳; 褚有群; 刘委明; 马淳安. 物理化学学报, 2013, 29 (2), 287.
7 Yang W.X. ; Liu X.J. ; Yue X.Y. ; Jia J.B. ; Guo S.J. J.Am.Chem.Soc 2015, 137 (4), 1436.
8 Oh J.G. ; Lee C.H. ; Kim H. Electrochem.Commun 2007, 9 (10), 2629.
9 Lee K. ; Savadogo O. ; Ishihara A. ; Mitsushima S. ; Kamiya N. ; Ota K. J.Electrochem.Soc 2006, 153 (1), A20.
10 Ozenler S.S. ; Kad1rgan F.J. Power Sources 2006, 154 (2), 364.
11 Pylypenko S. ; Mukherjee S. ; Olson T.S. ; Atanassov P. Electrochim.Acta 2008, 53 (27), 875.
12 Wen Z.H. ; Liu J. ; Li J.H. Adv.Mater 2008, 20 (4), 743.
13 Wu Z.X. ; Lv Y.Y. ; Xia Y.Y. ; Webley P.A. ; Zhao D.Y. J.Am.Chem.Soc 2012, 134 (4), 2236.
14 Guo X. ; Li L. ; Zhang X.H. ; Chen J.H. ChemElectroChem 2015, 2 (3), 404.
15 Dai Y.H. ; Jiang H. ; Hu Y.J. ; Fu Y. ; Li C.Z. Ind.Eng.Chem.Res 2014, 53 (8), 3125.
16 Zhang C. ; Xu L. ; Shan N. ; Sun T. ; Chen J. ; Yan Y. ACS Catal 2014, 4 (6), 1926.
17 Galeano C. ; Meier J.C. ; Soorholtz M. ; Bongard H. ; Baldizzone C. ; Karl J.J. ACS Catal 2014, 4 (11), 3856.
18 Huang Y.Q. ; Huang H.L. ; H. L.; Gao. ; Gan C.F. ; Liu Y.J. Electrochim.Acta 2014, 149 (34)
19 Zhang X.H. ; Zhong J.D. ; Yu Y.M. ; Zhang Y.S. ; Liu B. ; Chen J.H. Acta Phys.-Chim.Sin 2013, 29 (6), 1297.
19 张小华; 钟金娣; 于亚明; 张云松; 刘博; 陈金华. 物理化学学报, 2013, 29 (6), 1297.
20 Cheng J.L. ; Wang Y. ; Teng C. ; Shang Y.J. ; Ren L.B. ; Jiang B.W. Chem.Eng.J 2014, 242 (285)
21 Li Q. ; Pan H.Y. ; Higgins D. ; Cao R.G. ; Zhang G.Q. ; Lv H.F. ; Wu K.B. ; Cho J. ; Wu G. Small 2015, 11 (12), 1443.
22 Lian S.Y. ; Ming H. ; Huang H. ; Kang Z.H. ; Liu Y. Mater.Res.Bull 2012, 11 (47), 3336.
23 Ficicilar B. ; Bayrakceken A. ; Eroglu I. Int.J.Hydrog.Energy 2010, 35 (18), 9924.
24 Ding B. ; Yuan C.Z. ; Shen L.F. ; Xu G.Y. ; Nie P. ; Zhang X.G. Chem.Eur.J. 2013, 19 (3), 1013.
25 Liang C.D. ; Li Z.J. ; Dai S. Angew.Chem.Int.Ed 2008, 47 (20), 1696.
26 Pachfule P.Dhavale V.M. ; Kandambeth S. ; Kurungot S. ; Banerjee R. Chem.Eur.J. 2013, 19 (3), 974.
27 Wang H.G. ; Wu Z. ; Meng F.L. ; Ma D.L. ; Huang X.L. ; Wang L.M. ; Zhang X.B. ChemSusChem 2013, 6 (1), 56.
28 Guo Y.X. ; He J.P. ; Wang T. ; Xue H.R. ; Hu Y.Y. ; Li G.X. ; Tang J. ; Sun X.J. Power Sources 2011, 196 (22), 9299.
29 Chang K.W. ; Lim Z.Y. ; Du F.Y. ; Yang Y.L. ; Chang C.H. ; Hu C.C. ; Lin H.P. Diamond Relat.Mater 2009, 18 (2), 448.
30 Li S.S. ; Lv J.J. ; Teng L.N. ; Wang A.J. ; Chen J.R. ; Feng J.J. ACS Appl.Mater.Interfaces 2014, 6 (13), 10549.
31 Chaikittisilp W. ; Torad N.L. ; Li C.L. ; Imura M. ; Suzuki N. ; Ishihara S. ; Ariga K. ; Yamauchi Y. Chem.Eur.J 2014, 20 (15), 4217.
32 Lang X.Y. ; Han G.F. ; Xiao B.B. ; Gu L. ; Yang Z.Z. ; Wen Z. ; Zhu X.F. ; Zhao M. ; Li J.H. ; Jiang Q. Adv.Funct.Mater 2015, 25 (2), 230.
[1] LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 927-932.
[2] YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang. Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 685-692.
[3] CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 302-308.
[4] Hai-Li. GAO,Xiao-Long. LI,Wei. HE,Rui-Ting. GUO,Bo. CHAI. One-Step Synthesis of Reduced Graphene Oxide supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2117-2123.
[5] ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua. Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1297-1304.
[6] CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 989-995.
[7] WU Xiao-Qin, ZONG Rui-Long, ZHU Yong-Fa. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 437-444.
[8] WANG Xi-Zhao, FU Rong, ZHENG Jun-Sheng, Ma Jian-Xin. Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2011, 27(08): 1875-1880.
[9] WU Xiao-Qin, ZONG Rui-Long, MU Hao-Jie, ZHU Yong-Fa. Cataluminescence Performance on Catalysts of Graphene Supported Platinum[J]. Acta Phys. -Chim. Sin., 2010, 26(11): 3002-3008.
[10] BULGAN G.; ZONG Rui-Long; LIANG Shu-Hui; YAO Wen-Qing; ZHU Yong-Fa. CO Cataluminescence Property of Platinum Supported Composite Oxide Catalysts[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1547-1552.
[11] ZHOU Jian-Hua; HE Jian-Ping; JI Ya-Jun; ZHAO Gui-Wang; ZHANG Chuan-Xiang; CHEN Xiu; WANG Tao. Influence of Hierarchical Porosity in Carbon Material on Electrocatalytic Property of Supported Pt Nanoparticles[J]. Acta Phys. -Chim. Sin., 2008, 24(05): 839-843.
[12] TIAN Juan;ZHENG Dan;ZHANG Xi-Gui;ZHANG Bao-Hong;XIA Bao-Jia;YANG Hui. Preparation of Pt Nanoparticle Modified Porous Silicon Electrode and Its Electrocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2007, 23(01): 68-72.
[13] CHU Dao-Bao;YIN Xiao-Juan;FENG De-Xiang;LIN Hua-Shui;TIAN Zhao-Wu. Electrocatalytic Oxidation of Ethanol on Pt/nanoTiO2-CNT Complex Catalysts[J]. Acta Phys. -Chim. Sin., 2006, 22(10): 1238-1242.
[14] TIAN Na;CHEN Wei;SUN Shi-Gang. Spectroscopic Characterization and Electrocatalytic Properties of Core-Shell Au-Pt Nanoparticles[J]. Acta Phys. -Chim. Sin., 2005, 21(01): 74-78.
[15] Chen Wei;Sun Shi-Gang;Si Di;Chen Sheng-Pei. Electrocatalytic Properties of Agglomerates of Pt Nanoparticles in Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2003, 19(05): 441-444.