Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (6): 1347-1370    DOI: 10.3866/PKU.WHXB201603143
REVIEW     
Application of Organic Hole-Transporting Materials in Perovskite Solar Cells
Xue-Peng LIU1,2,Fan-Tai KONG1,*(),Wang-Chao CHEN1,2,Ting YU1,2,Fu-Ling GUO1,Jian CHEN1,Song-Yuan DAI1,3,*()
1 Key Laboratory of Novel Thin Film Solar Cells, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
2 University of Science and Technology of China, Hefei 230026, P. R. China
3 Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206, P. R. China
Download: HTML     PDF(29887KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Organic-inorganic halide perovskite solar cells (PSCs) have attracted increasing attention because of their desirable properties.A key advance has been the replacement of the liquid electrolytes by solid-state hole-transporting materials (HTMs), which not only improves the power conversion efficiency (PCE) but also enhances the cell stability.HTMs are now an integral part of PSCs.Both organic and inorganic HTMs have found application in PSCs.However, inorganic HTMs are hampered by the limited choice of materials and the relatively low PCE of the solar cells based on them.The development of new organic HTMs is therefore necessary to improve the PCE and stability of PSCs.This has become a focus of various research fields, and new HTMs continue to emerge in large numbers.In this paper, we give an overview of the use of organic HTMs in PSCs. According to their molecular weight, organic HTMs are classified as either molecular or polymeric.We discuss in detail the effects of the functional groups and structures of organic HTMs on the PCE, fill factor, open circuit voltage, and stability of the resulting PSCs, as developed in recent years.The paper also covers the highest occupied molecular orbitals, the hole mobility, and the use of additives in HTMs.Finally, forecasts of the future development of organic HTMs are reviewed.



Key wordsPerovskite solar cell      Organic hole transporting material      Triphenylamine      Small-molecule      Polymer     
Received: 09 December 2015      Published: 14 March 2016
MSC2000:  O646  
Fund:  National High Technology Research and Development Program of China (863)(2015AA050602);Natural Science Foundation of Anhui Province, China(1508085SMF224)
Corresponding Authors: Fan-Tai KONG,Song-Yuan DAI     E-mail: kongfantai@163.com;sydai@ncepu.edu.cn
Cite this article:

Xue-Peng LIU,Fan-Tai KONG,Wang-Chao CHEN,Ting YU,Fu-Ling GUO,Jian CHEN,Song-Yuan DAI. Application of Organic Hole-Transporting Materials in Perovskite Solar Cells. Acta Physico-Chimica Sinca, 2016, 32(6): 1347-1370.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603143     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1347

Fig 1 Crystal structure of perovskite semiconductor
Fig 2 Structures of perovskite solar cells FTO: fluorine-doped SnO2
Fig 3 Energy level scheme for transporting direction of electron and hole carriers in n-i-p perovskite solar cells ETM: electron transporting materials
No.Device structure/TypeE(HOMO)/eVVoc/VJsc/(mA ? cm-2)FF/%PCE/%AdditiveRef.
1M/MAPbI3-5.220.8917629.7LiTFSI, TBP14
1P/MAPbI3-xClx-1.1322.87519.3LiTFSI, TBP, FK209103
1M/MAPbI3-1.0723.87619.7LiTFSI, TBP30
2M/MAPbI3-5.221.0221.27816.7LiTFSI, TBP39
3M/MAPbI3-5.311.0121.16513.9LiTFSI, TBP39
66P/MAPbI3-xClx5.0(IP)0.8614.9698.7F6-TCNNQ40
4P/MAPbI3-xClx5.1(IP)1.03166610.9F6-TCNNQ40
5P/MAPbI3-xClx5.3(IP)0.9716.17010.9F6-TCNNQ40
6P/MAPbI3-xClx5.4(IP)0.8212.4586.7F6-TCNNQ40
7P/MAPbI3-xClx5.6(IP)0.840.72130.1F6-TCNNQ40
8M/MAPbI3-4.920.9916.56711.0NDP941
9M/MAPbI3-4.921.0521.87216.6LiTFSI, TBP, FK10241
10M/MAPbI3-4.931.0515.47010.8LiTFSI, TBP, FK10241
11M/MAPbI3-5.150.1017.67312.2LiTFSI, TBP, FK10242
12M/MAPbI3-5.000.9719.37213.4FK20943
13M/MAPbI3-5.291.0013.5638.4LiTFSI, TBP, FK10244
14M/MAPbI3-5.351.0317.26912.2LiTFSI, TBP, FK10244
15M/MAPbI3-5.330.9920.36212.4LiTFSI, TBP, FK10244
16M/MAPbI3-5.29(PES)1.08137811.0LiTFSI, TBP, FK26945
17M/MAPbI3-5.311.0819.87215.4LiTFSI, TBP, FK10246
18M/MAPbI3-5.291.07207115.2LiTFSI, TBP, FK10246
19M/MAPbI3-5.140.9721.06713.6LiTFSI, TBP, FK20947
20M/MAPbI3-5.130.9520.96212.3LiTFSI, TBP, FK20947
21M/MAPbI3-5.150.9218.47011.9LiTFSI, TBP48
22M/MAPbI3-5.290.9917.36310.8LiTFSI, TBP48
23M/MAPbI3-5.211.0020.76914.2LiTFSI, TBP49
24M/MAPbI3-5.250.9619.46311.8LiTFSI, TBP49
25M/MAPbI3-5.040.9220.76612.5-50
26M/MAPbI3-5.110.9319.16110.9-50
27M/MAPbI3-5.231.0417.96812.8-51
28M/MAPbI3-5.150.888.03453.18-52
29M/MAPbI3-5.080.912.14480.93-52
30M/MAPbI3-5.25*0.9619.87013.3LiTFSI, TBP, FK20953
31M/MAPbI3-5.24*1.0220.37114.8LiTFSI, TBP, FK20953
32M/MAPbI3-5.23*0.9920.46913.9LiTFSI, TBP, FK20953
33M/MAPbI3-5.22*0.9418.66311.0LiTFSI, TBP, FK20954
34M/MAPbI3-5.25*0.9818.66712.6LiTFSI, TBP, FK20954
35M/MAPbI3-5.21*1.0018.66713.0LiTFSI, TBP, FK20954
36M/MAPbI3-5.330.9721.36713.8LiTFSI, TBP55
37M/MAPbI3-5.220.9521.17114.2LiTFSI, TBP55
38M/MAPbI3-5.340.9521.26914.0LiTFSI, TBP55
39M/MAPbI3-5.191.0318.26111.4LiTFSI, TBP57
40M/MAPbI3-5.020.9221.26713.1LiTFSI, TBP57
40M/MAPbI3-5.320.8917.27211.0LiTFSI, TBP56
41M/MAPbI3-5.271.0921.47316.9LiTFSI, TBP, FK20958
42M/MAPbI3-5.331.0422.07817.8LiTFSI, TBP59
43M/MAPbI3-5.161.0519.16513.2LiTFSI, TBP, FK10260
44P/MAPbI3-5.280.9518.96111.0LiTFSI, TBP, FK10261
45M/MAPbI3-5.181.1019.66113.1LiTFSI, TBP, FK10262
46M/MAPbI3-5.170.9720.35510.9LiTFSI, TBP63
47M/MAPbl3-5.081.0021.86614.4LiTFSI, TBP63
48M/MAPbI3-5.000.9719.16612.3-64
49M/MAPbI3一4.960.9718.87113.0-64
50M/MAPbI3一4.920.9518.76912.2-64
51M/MAPbI3-4.900.9317.37011.2-64
52M/MAPbI3-5.350.9218.16811.3-65
53M/MAPbI3-5.230.9417.96911.6-65
54M/MAPbI3-5.310.9315.4639.0-66
55M/MAPbI3-5.280.9318.47012.0-66
56M/MAPbI3-5.330.9419.37213.3-67
57M/MAPbI3-5.300.9315.87010.3-67
58M/MAPbI3-xClx-5.430.7617.1587.6LiTFSI, TBP68
59M/MAPbI3-xClx-5.490.8816.8669.8LiTFSI, TBP68
60M/MAPbI3-5.020.9616.4568.8H-TFSI, Et4N-TFSI69
61M/MAPbI3-4.400.8718.8508.0H-TFSI, Et4N-TFSI69
62M/MAPbI3-5.160.9616.87211.7LiTFSI, TBP, FK20970
63M/MAPbI3-5.170.9719.47213.5LiTFSI, TBP, FK20970
64M/MAPbI3-5.380.9213.1597.1HAT-CN71
65M/MAPbI3-1.1218.16813.7-72
67M/MAPbBr3-xClx-6.0(PES)1.504.0462.7LiTFSI, TBP100
68M/MAPbI3-5.360.9717.87412.8-73
69M/MAPbI3-5.330.9516.87211.5-73
71M/MAPbI3-5.250.9917.37112.3LiTFSI74
72M/MAPbI3-5.260.9916.46510.5-75
73M/MAPbI3-5.100.9015.2689.5-75
74M/MAPbI3-5.200.9516.67211.4-76
75M/MAPbI3-5.280.9016.37010.3-76
76P/MAPbI3-5.291.0219.16813.2-77
77P/MAPbI3-xClx-5.4(PES)0.9515.3608.8PDMS78
78P/MAPbI3-xClx-5.100.9720.77414.9-79
79M/MAPbI3-xClx-5.201.0521.27316.2-80
80M/MAPbI3-xClx-5.500.9817.1376.2-80
81M/MAPbI3-5.090.9721.87014.7LiTFSI, TBP81
82M/MAPbI3-5.080.9621.27214.7LiTFSI, TBP81
83M/MAPbI3-5.200.7516.3405.0-82
84M/MAPbI3-xClx-5.120.6516.5505.0-83
85M/MAPbI3-0.8016.4506.7LiTFSI, TBP86
86M/MAPbI3-xClx-5.600.6721.3466.6-87
87M/MAPbI3-5.400.7312.6535.1-88
88M/MAPbI3-5.410.8910.8343.3LiTFSI, TBP, FK20989
89M/MAPbI3-5.250.9520.46412.3LiTFSI, TBP, FK20989
90M/MAPbI3-5.110.8920.26912.4LiTFSI, TBP, FK20989
91M/MAPbI3-5.050.8619.96411.0-90
92M/MAPbI3-5.400.9120.86011.5LiTFSI, TBP91
93M/MAPbI3-5.420.9517.56911.4-92
95M/MAPbI3-5.170.9414.4648.6-94
96M/MAPbI3-5.410.9819.25810.8LiTFSI94
97M/MAPbI3-5.290.8621.16211.3LiTFSI, TBP95
98M/MAPbI3-5.300.9817.96912.0MY11,FK20996
99M/MAPbI3-5.070.9416.56710.4LiTFSI, TBP97
100M/MAPbI3-5.400.9520.66612.8-98
101M/MAPbBr3-6.101.301.1400.6-99
102M/MAPbBr3-6.301.237.6615.6TBP, LiTFSI101
103M/MAPbBr3-5.001.245.8614.3-102
104M/FAPbI3-5.141.0624.77820.2LiTFSI, TBP6
105M/MAPbBr3-5.4(PES)1.366.3706.0LiTFSI, TBP104
106M/MAPbBr3-5.5(PES)1.406.1796.7LiTFSI, TBP104
107M/MAPbI3-5.120.9717.67012.0LiTFSI, TBP105
108P/MAPbI3-5.401.1022.07015.3-106
109M/MAPbI3-5.300.9617.56511.0LiTFSI, TBP107
110M/MAPbI3-5.100.9113.8648.0LiTFSI, TBP107
111M/MAPbI3-5.230.7814.5657.3LiTFSI, TBP, LiI108
111M/MAPbI3-5.270.8818.0406.3LiTFSI, TBP109
112P/MAPbI3-5.200.9819.16612.4LiTFSI, D-TBP110
113P/MAPbI3-5.180.9920.37715.4-111
114P/MAPbI3-5.201.1020.97918.1-112
115M/MAPbI3-4.801.0620.26814.5LiTFSI, TBP113
116M/MAPbBr3-5.401.164.47593.0-114
116M/MAPbI3-5.400.8313.9485.6-114
117M/MAPbI3-5.400.8614.4759.2LiTFSI, TBP115
118M/MAPbI3-5.300.9820.56112.3LiTFSI, TBP116
119M/MAPbI3-5.250.8314.4627.4-117
120M/MAPbI3-5.220.8915.4648.7-117
121P/MAPbI3-5.120.8717.76510.0-118
122M/MAPbI3-xClx-5.200.9420.76512.7LiTFSI, TBP119
123M/MAPbI3-0.8412.0666.6-120
124M/MAPbI3-xClx-5.110.9723.96114.1LiTFSI, TBP121
125M/MAPbI3-5.300.7710.3675.3LiTFSI, TBP122
126M/MAPbI3-5.450.9210.5444.2LiTFSI, TBP122
127M/MAPbI3-xClx-5.261.0721.17316.6-123
Table 1 Energy levels of different HTMs and the performance parameters of the devices
Fig 4 Spiro-type HTMs with with triarylamine moieties
Fig 5 Molecular structures of additives in HTMs
Fig 6 Star-shaped HTMs with triarylamine moieties
Fig 7 Linear-shaped HTMs with triarylamine moieties
Fig 8 Small molecular HTMs with thiophene moieties
Fig 9 Phthalocyanine HTMs
Fig 10 Other type molecular HTMs
Fig 11 Polymer HTMs with aniline moiety
Fig 12 Polymer HTMs with thiophene moieties
1 Xing G. ; Mathews N. ; Sun S. ; Lim S.S. ; Lam Y.M. ; Gratzel M. ; Mhaisalkar S. ; Sum T.C. Science 2013, 342, 344.
2 Mitzi D.B. ; Chondroudis K. ; Kagan C.R. IBM.J.Res.Dev 2001, 45, 29.
3 Deschler F. ; Price M. ; Pathak S. ; Klintberg L.E. ; Jarausch D.D. ; Higler R. ; Hüttner S. ; Leijtens T. ; Stranks S.D. ; Snaith H.J. J.Phys.Chem.Lett 2014, 5, 1421.
4 De Wolf S. ; Holovsky J. ; Moon S.J. ; L?per P. ; Niesen B. ; Ledinsky M. ; Haug F.J. ; Yum J.H. ; Ballif C. J.Phys.Chem. Lett 2014, 5, 1035.
5 Stranks S.D. ; Eperon G.E. ; Grancini G. ; Menelaou C. ; Alcocer M.J. ; Leijtens T. ; Herz L.M. ; Petrozza A. ; Snaith H.J. Science 2013, 342, 341.
6 Yang W.S. ; Noh J.H. ; Jeon N.J. ; Kim Y.C. ; Ryu S. ; Seo J. ; Seok S.I. Science 2015, 348, 1234.
7 Yao X. ; Ding Y.L. ; Zhang X.D. ; Zhao Y. Acta Phys.Sin 2015, 64, 38805.
7 姚鑫; 丁艳丽; 张晓丹; 赵颖. 物理学报, 2015, 64, 38805.
8 Yuan H.L. ; Li J.P. ; Wang M.K. Acta Phys.Sin 2015, 64, 38405.
8 袁怀亮; 李俊鹏; 王鸣魁. 物理学报, 2015, 64, 38405.
9 Xue Q.F. ; Sun C. ; Hu Z.C. ; Huang F. ; Ye X.L. ; Cao Y. Acta Chim.Sin 2014, 73, 179.
9 薛启帆; 孙辰; 胡志诚; 黄飞; 叶轩立; 曹镛. 化学学报, 2014, 73, 179.
10 Yu Z. ; Sun L. Adv.Energy Mater 2015, 5, 1500213.
11 Liu C. ; Shen L.Y. ; Xu Z.Y. ; Wang R. ; Zhao G.C. ; Shi G. Y. ; Dai X.Y. ; Shi C.W. Chem.Ind.Eng.Prog 2014, 33, 3246.
11 刘成; 沈璐颖; 徐郑羽; 王冉; 赵高超; 史高杨; 代晓艳; 史成武. 化工进展, 2014, 33, 3246.
12 Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J.Am.Chem. Soc 2009, 131, 6050.
13 Im J.H. ; Lee C.R. ; Lee J.W. ; Park S.W. ; Park N.G. Nanoscale 2011, 3, 4088.
14 Kim H.S. ; Lee C.R. ; Im J.H. ; Lee K.B. ; Moehl T. ; Marchioro A. ; Moon S.J. ; Humphry-Baker R. ; Yum J.H. ; Moser J.E. Sci.Rep-UK 2012, 2, 591.
15 Christians J.A. ; Fung R.C. ; Kamat P.V. J.Am.Chem.Soc 2013, 136, 758.
16 Liu Z. ; Zhang M. ; Xu X. ; Cai F. ; Yuan H. ; Bu L. ; Li W. ; Zhu A. ; Zhao Z. ; Wang M. J.Mater.Chem.A 2015, 3, 24121.
17 Wang K.C. ; Shen P.S. ; Li M.H. ; Chen S. ; Lin M.W. ; Chen P. ; Guo T.F. ACS Appl.Mater.Interfaces 2014, 6, 11851.
18 Chen W. ; Wu Y. ; Liu J. ; Qin C. ; Yang X. ; Islam A. ; Cheng Y.B. ; Han L. Energy Environ.Sci 2015, 8, 629.
19 Qin P. ; Tanaka S. ; Ito S. ; Tetreault N. ; Manabe K. ; Nishino H. ; Nazeeruddin M.K. ; Gr?tzel M. Nat.Commun 2014, 5, 3834.
20 Ito S. ; Tanaka S. ; Vahlman H. ; Nishino H. ; Manabe K. ; Lund P. ChemPhysChem 2014, 15, 1194.
21 Chavhan S. ; Miguel O. ; Grande H.J. ; Gonzalez-Pedro V. ; Sánchez R.S. ; Barea E.M. ; Mora-Seró I. ; Tena-Zaera R. J.Mater.Chem.A 2014, 2, 12754.
22 Subbiah A.S. ; Halder A. ; Ghosh S. ; Mahuli N. ; Hodes G. ; Sarkar S.K. J.Phys.Chem.Lett 2014, 5, 1748.
23 Ito S. ; Tanaka S. ; Manabe K. ; Nishino H. J.Phys.Chem.C 2014, 118, 16995.
24 Ye S. ; Sun W. ; Li Y. ; Yan W. ; Peng H. ; Bian Z. ; Liu Z. ; Huang C. Nano Lett 2015, 15, 3723.
25 Kim J.H. ; Liang P.W. ; Williams S.T. ; Cho N. ; Chueh C. C. ; Glaz M.S. ; Ginger D.S. ; Jen A.K.Y. Adv.Mater 2015, 27, 695.
26 Wang Y. ; Xia Z. ; Liang J. ; Wang X. ; Liu Y. ; L C. ; Zhang S. ; Zhou H. Semicond.Sci.Technol 2015, 30, 4004.
27 Chen W. ; Wu Y. ; Yue Y. ; Liu J. ; Zhang W. ; Yang X. ; Chen H. ; Bi E. ; Ashraful I. ; Gr?tzel M. Science 2015, 350, 944.
28 Li Y. ; Zhu J. ; Huang Y. ; Wei J. ; Liu F. ; Shao Z. ; Hu L. ; Chen S. ; Yang S. ; Tang J. Nanoscale 2015, 7, 9902.
29 Lv M. ; Zhu J. ; Huang Y. ; Li Y. ; Shao Z. ; Xu Y. ; Dai S. ACS Appl.Mater.Interfaces 2015, 7, 17482.
30 Ahn N. ; Son D.Y. ; Jang I.H. ; Kang S.M. ; Choi M. ; Park N.G. J.Am.Chem.Soc 2015, 13, 8696.
31 Hawash Z. ; Ono L.K. ; Raga S.R. ; Lee M.V. ; Qi Y. Chem. Mater 2015, 27, 562.
32 Noh J.H. ; Jeon N.J. ; Choi Y.C. ; Nazeeruddin M.K. ; Gr?tzel M. ; Seok S.I. J.Mater.Chem.A 2013, 1, 11842.
33 Abate A. ; Hollman D.J. ; Teuscher J.l. ; Pathak S. ; Avolio R. ; D'Errico G. ; Vitiello G. ; Fantacci S. ; Snaith H.J. J.Am. Chem.Soc 2013, 135, 13538.
34 Koh T.M. ; Dharani S. ; Li H. ; Prabhakar R.R. ; Mathews N. ; Grimsdale A.C. ; Mhaisalkar S.G. ChemSusChem 2014, 7, 1909.
35 Badia L. ; Mas-Marzá E. ; Sánchez R.S. ; Barea E.M. ; Bisquert J. ; Mora-Seró I. APL Mater 2014, 2, 081507.
36 Zhang H. ; Shi Y. ; Yan F. ; Wang L. ; Wang K. ; Xing Y. ; Dong Q. ; Ma T. Chem.Commun 2014, 50, 5020.
37 Xu B. ; Huang J. ; Agren H. ; Kloo L. ; Hagfeldt A. ; Sun L. ChemSusChem 2014, 7, 3252.
38 Li W. ; Dong H. ; Wang L. ; Li N. ; Guo X. ; Li J. ; Qiu Y. J.Mater.Chem.A 2014, 2, 13587.
39 Jeon N.J. ; Lee H.G. ; Kim Y.C. ; Seo J. ; Noh J.H. ; Lee J. ; Seok S.I. J.Am.Chem.Soc 2014, 136, 7837.
40 Polander L.E. ; Pahner P. ; Schwarze M. ; Saalfrank M. ; Koerner C. ; Leo K. APL Mater 2014, 2, 081503.
41 Li M.H. ; Hsu C.W. ; Shen P.S. ; Cheng H.M. ; Chi Y. ; Chen P. ; Guo T.F. Chem.Commun 2015, 51, 15518.
42 Ganesan P. ; Fu K. ; Gao P. ; Raabe I. ; Schenk K. ; Scopelliti R. ; Luo J. ; Wong L.H. ; Gr?tzel M. ; Nazeeruddin M.K. Energy Environ.Sci 2015, 8, 1986.
43 Franckevi?ius M. ; Mishra A. ; Kreuzer F. ; Luo J. ; Zakeeruddin S.M. ; Gr?tzel M. Mater.Horiz 2015, 2, 613.
44 Krishna A. ; Sabba D. ; Li H. ; Yin J. ; Boix P.P. ; Soci C. ; Mhaisalkar S.G. ; Grimsdale A.C. Chem.Sci 2014, 5, 2702.
45 Krishnamoorthy T. ; Kunwu F. ; Boix P.P. ; Li H. ; Koh T.M. ; Leong W.L. ; Powar S. ; Grimsdale A. ; Gr?tzel M. ; Mathews N. J.Mater.Chem.A 2014, 2, 6305.
46 Li H. ; Fu K. ; Boix P.P. ; Wong L.H. ; Hagfeldt A. ; Gr?tzel M. ; Mhaisalkar S.G. ; Grimsdale A.C. ChemSusChem 2014, 7, 3420.
47 Choi H. ; Paek S. ; Lim N. ; Lee Y.H. ; Nazeeruddin M.K. ; Ko J. Chem.-Eur.J 2014, 20, 10894.
48 Choi H. ; Park S. ; Paek S. ; Ekanayake P. ; Nazeeruddin M. K. ; Ko J. J.Mater.Chem.A 2014, 2, 19136.
49 Choi H. ; Cho J.W. ; Kang M.S. ; Ko J. Chem.Commun 2015, 51, 9305.
50 Do K. ; Choi H. ; Lim K. ; Jo H. ; Cho J.W. ; Nazeeruddin M. K. ; Ko J. Chem.Commun 2014, 50, 10971.
51 Qin P. ; Paek S. ; Dar M.I. ; Pellet N. ; Ko J. ; Gr?tzel M. ; Nazeeruddin M.K. J.Am.Chem.Soc 2014, 136, 8516.
52 Wang J. ; Chen Y. ; Liang M. ; Ge G. ; Zhou R. ; Sun Z. ; Xue S. Dyes Pigments 2015, 125, 399.
53 Sung S.D. ; Kang M.S. ; Choi I.T. ; Kim H.M. ; Kim H. ; Hong M. ; Kim H.K. ; Lee W.I. Chem.Commun 2014, 50, 14161.
54 Kang M.S. ; Sung S.D. ; Choi I.T. ; Kim H. ; Hong M. ; Kim J. ; Lee W.I. ; Kim H.K. ACS Appl.Mater.Interfaces 2015, 7, 22213.
55 Choi H. ; Park S. ; Kang M.S. ; Ko J. Chem.Commun 2015, 51, 9305.
56 Palomares E.J. ; Martin N. ; Molina A. ; Cabau L. ; FernandezMontcada N. ; Vidal-Ferran A. ; Garcia I. Chem.Commun 2015, 51, 13980.
57 Choi H. ; Do K. ; Park S. ; Yu J.S. ; Ko J. Chem.Asian J 2015, 21, 15919.
58 Gratia P. ; Magomedov A. ; Malinauskas T. ; Daskeviciene M. ; Abate A. ; Ahmad S. ; Gr?tzel M. ; Getautis V. ; Nazeeruddin M.K. Angew.Chem.Int.Edit 2015, 54, 11409.
59 Park S. ; Heo J.H. ; Cheon C.H. ; Kim H. ; Im S.H. ; Son H. J. J.Mater.Chem.A 2015, 3, 24215.
60 Li H. ; Fu K. ; Hagfeldt A. ; Gr?tzel M. ; Mhaisalkar S.G. ; Grimsdale A.C. Angew.Chem.Int.Edit 2014, 53, 4085.
61 Petrus M. ; Bein T. ; Dingemans T. ; Docampo P. J.Mater. Chem.A 2015, 3, 12159.
62 Krishna A. ; Sabba D. ; Yin J. ; Bruno A. ; Boix P.P. ; Gao Y. ; Dewi H.A. ; Gurzadyan G.G. ; Soci C. ; Mhaisalkar S.G. Chem.-Eur.J 2015, 21, 15113.
63 Choi H. ; Jo H. ; Paek S. ; Ko K. ; Ko H.M. ; Lee J.K. ; Ko J. Chem.Asian J 2015, 11, 548.
64 Zhu L. ; Xiao J. ; Shi J. ; Wang J. ; Lv S. ; Xu Y. ; Luo Y. ; Xiao Y. ; Wang S. ; Meng Q. Nano Res 2014, 8, 1116.
65 You J. ; Yang Y.M. ; Hong Z. ; Song T.B. ; Meng L. ; Liu Y. ; Jiang C. ; Zhou H. ; Chang W.H. ; Li G. Appl.Phys.Lett 2014, 105, 183902.
66 Lv S. ; Song Y. ; Xiao J. ; Zhu L. ; Shi J. ; Wei H. ; Xu Y. ; Dong J. ; Xu X. ; Wang S. Electrochim.Acta 2015, 182, 733.
67 Song Y. ; Lv S. ; Liu X. ; Li X. ; Wang S. ; Wei H. ; Li D. ; Xiao Y. ; Meng Q. Chem.Commun 2014, 50, 15239.
68 Xu B. ; Sheibani E. ; Liu P. ; Zhang J. ; Tian H. ; Vlachopoulos N. ; Boschloo G. ; Kloo L. ; Hagfeldt A. ; Sun L. Adv.Mater 2014, 26, 6629.
69 Abate A. ; Planells M. ; Hollman D.J. ; Barthi V. ; Chand S. ; Snaith H.J. ; Robertson N. Phys.Chem.Chem.Phys 2015, 17, 2335.
70 Abate A. ; Paek S. ; Giordano F. ; Correa-Baena J.P. ; Saliba M. ; Gao P. ; Matsui T. ; Ko J. ; Zakeeruddin S.M. ; Dahmen K.H. Energy Environ.Sci 2015, 8, 2946.
71 Ma Y. ; Chung Y.H. ; Zheng L. ; Zhang D. ; Yu X. ; Xiao L. ; Chen Z. ; Wang S. ; Qu B. ; Gong Q. ACS Appl.Mater. Interfaces 2015, 7, 6406.
72 Kim B.S. ; Kim T.M. ; Choi M.S. ; Shim H.S. ; Kim J. J.Org.Electron 2015, 17, 102.
73 Cheng M. ; Xu B. ; Chen C. ; Yang X. ; Zhang F. ; Tan Q. ; Hua Y. ; Kloo L. ; Sun L. Adv.Energy Mater 2015, 5, 1401720.
74 Cheng M. ; Chen C. ; Xu B. ; Hua Y. ; Zhang F. ; Kloo L. ; Sun L. J.Energ.Chem 2015, 24, 698.
75 Qin P. ; Kast H. ; Nazeeruddin M.K. ; Zakeeruddin S.M. ; Mishra A. ; B?uerle P. ; Gr?tzel M. Energy Environ.Sci 2014, 7, 2981.
76 Mishra A. ; Steck C. ; Franckevi?ius M. ; Zakeeruddin S.M. ; Baeuerle P. ; Gr?tzel M. J.Mater.Chem.A 2015, 3, 17738.
77 Cheng M. ; Chen C. ; Yang X. ; Huang J. ; Zhang F. ; Xu B. ; Sun L. Chem.Mater 2015, 27, 1808.
78 Zheng L. ; Chung Y.H. ; Ma Y. ; Zhang L. ; Xiao L. ; Chen Z. ; Wang S. ; Qu B. ; Gong Q. Chem.Commun 2014, 50, 11196.
79 Liu Y. ; Chen Q. ; Duan H.S. ; Zhou H. ; Yang Y.M. ; Chen H. ; Luo S. ; Song T.B. ; Dou L. ; Hong Z. J.Mater.Chem.A 2015, 3, 11940.
80 Liu Y. ; Hong Z. ; Chen Q. ; Chen H. ; Chang W.H. ; Yang Y. M. ; Song T.B. ; Yang Y. Adv.Mater 2016, 28, 440.
81 Paek S. ; Rub M.A. ; Choi H. ; Kosa S.A. ; Alamry K.A. ; Cho J.W. ; Gao P. ; Ko J. ; Asiri A.M. ; Nazeeruddin M.K. Nanoscale 2016, 8, 6335.
82 Kumar C.V. ; Sfyri G. ; Raptis D. ; Stathatos E. ; Lianos P. RSC Adv 2015, 5, 3786.
83 Sfyri G. ; Kumar C.V. ; Wang Y.L. ; Xu Z.X. ; Krontiras C. ; Lianos P. Appl.Surf.Sci 2016, 360, 767.
84 Ke W. ; Zhao D. ; Grice C.R. ; Cimaroli A.J. ; Fang G. ; Yan Y. J.Mater.Chem.A 2015, 3, 23888.
85 Seo J. ; Jeon N.J. ; Yang W.S. ; Shin H.W. ; Ahn T.K. ; Lee J. ; Noh J.H. ; Seok S.I. Adv.Energy Mater 2015, 5, 1501320.
86 Ramos F.J. ; Ince M. ; Urbani M. ; Abate A. ; Gr?tzel M. ; Ahmad S. ; Torres T. ; Nazeeruddin M.K. Dalton Trans 2015, 44, 10847.
87 Sfyri G. ; Kumar C.V. ; Sabapathi G. ; Giribabu L. ; Andrikopoulos K.S. ; Stathatos E. ; Lianos P. RSC Adv 2015, 5, 69813.
88 Sun M. ; Wang S. ; Xiao Y. ; Song Z. ; Li X. J.Energ.Chem 2015, 24, 756.
89 Jeon N.J. ; Lee J. ; Noh J.H. ; Nazeeruddin M.K. ; Gr?tzel M. ; Seok S.I. J.Am.Chem.Soc 2013, 135, 19087.
90 Liu J. ; Wu Y. ; Qin C. ; Yang X. ; Yasuda T. ; Islam A. ; Zhang K. ; Peng W. ; Chen W. ; Han L. Energy Environ.Sci 2014, 7, 2963.
91 Kazim S. ; Ramos F.J. ; Gao P. ; Nazeeruddin M.K. ; Gr?tzel M. ; Ahmad S. Energy Environ.Sci 2015, 8, 1816.
92 Xiao J. ; Han L. ; Zhu L. ; Lv S. ; Shi J. ; Wei H. ; Xu Y. ; Dong J. ; Xu X. ; Xiao Y. RSC Adv 2014, 4, 32918.
93 Bi D. ; Yang L. ; Boschloo G. ; Hagfeldt A. ; Johansson E.M. J.Phys.Chem.Lett 2013, 4, 1532.
94 Ramos F. ; Rakstys K. ; Kazim S. ; Gr?tzel M. ; Nazeeruddin M.K. ; Ahmad S. RSC Adv 2015, 5, 53426.
95 Lim I. ; Kim E.K. ; Patil S.A. ; Lee W. ; Shrestha N.K. ; Lee J.K. ; Seok W.K. ; Cho C.G. ; Han S.H. RSC Adv 2015, 5, 55321.
96 Wang H. ; Sheikh A.D. ; Feng Q. ; Li F. ; Chen Y. ; Yu W. ; Alarousu E. ; Ma C. ; Haque M.A. ; Shi D. ACS Photonics 2015, 2, 849.
97 Ma S. ; Zhang H. ; Zhao N. ; Cheng Y. ; Wang M. ; Shen Y. ; Tu G. J.Mater.Chem.A 2015, 3, 12139.
98 Cao J. ; Liu Y.M. ; Jing X. ; Yin J. ; Li J. ; Xu B. ; Tan Y.Z. ; Zheng N. J.Am.Chem.Soc 2015, 137, 10914.
99 Edri E. ; Kirmayer S. ; Cahen D. ; Hodes G. J.Phys.Chem. Lett 2013, 4, 897.
100 Edri E. ; Kirmayer S. ; Kulbak M. ; Hodes G. ; Cahen D. J. Phys.Chem.Lett 2014, 5, 429.
101 Hodes G. ; Rybtchinski B. ; Siram R.B. ; Cahen D. ; Das J. J. Mater.Chem.A 2015, 3, 20305.
102 Li Z. ; Boix P.P. ; Xing G. ; Fu K. ; Kulkarni S.A. ; Batabyal S. ; Xu W. ; Cao A. ; Sum T.C. ; Mathews N. Nanoscale 2016, 8, 6352.
103 Zhou H. ; Chen Q. ; Li G. ; Luo S. ; Song T.B. ; Duan H.S. ; Hong Z. ; You J. ; Liu Y. ; Yang Y. Science 2014, 345, 542.
104 Ryu S. ; Noh J.H. ; Jeon N.J. ; Kim Y.C. ; Yang W.S. ; Seo J. ; Seok S.I. Energy Environ.Sci 2014, 7, 2614.
105 Qin P. ; Tetreault N. ; Dar M.I. ; Gao P. ; McCall K.L. ; Rutter S.R. ; Ogier S.D. ; Forrest N.D. ; Bissett J.S. ; Simms M.J. Adv.Energy Mater 2015, 5, 1400980.
106 Zhao D. ; Sexton M. ; Park H.Y. ; Baure G. ; Nino J.C. ; So F. Adv.Energy Mater 2014, 5, 1401855.
107 Zhu Z. ; Bai Y. ; Lee H.K.H. ; Mu C. ; Zhang T. ; Zhang L. ; Wang J. ; Yan H. ; So S.K. ; Yang S. Adv.Funct.Mater 2014, 24, 7357.
108 Xiao Y. ; Han G. ; Chang Y. ; Zhou H. ; Li M. ; Li Y. J.Power Sources 2014, 267, 1.
109 Ameen S. ; Akhtar M.S. ; Seo H.K. ; Shin H.S. Langmuir 2014, 30, 12786.
110 Conings B. ; Baeten L. ; De Dobbelaere C. ; D'Haen J. ; Manca J. ; Boyen H.G. Adv.Mater 2014, 26, 2041.
111 Yan W. ; Li Y. ; Li Y. ; Ye S. ; Liu Z. ; Wang S. ; Bian Z. ; Huang C. Nano Res 2015, 8, 2474.
112 Heo J.H. ; Han H.J. ; Kim D. ; Ahn T.K. ; Im S.H. Energy Environ.Sci 2015, 8, 1602.
113 Liu J. ; Pathak S. ; Stergiopoulos T. ; Leijtens T. ; Wojciechowski K. ; Schumann S. ; Kausch-Busies N. ; Snaith H.J. J.Phys.Chem.Lett 2015, 6, 1666.
114 Cai B. ; Xing Y. ; Yang Z. ; Zhang W.H. ; Qiu J. Energy Environ.Sci 2013, 6, 1480.
115 Kwon Y.S. ; Lim J. ; Yun H.J. ; Kim Y.H. ; Park T. Energy Environ.Sci 2014, 7, 1454.
116 Dubey A. ; Adhikari N. ; Venkatesan S. ; Gu S. ; Khatiwada D. ; Wang Q. ; Mohammad L. ; Kumar M. ; Qiao Q. Sol. Energ.Mater.Sol.C 2015, 145, 193.
117 Lee J.W. ; Park S. ; Ko M.J. ; Son H.J. ; Park N.G. ChemPhysChem 2014, 15, 2595.
118 Chen W. ; Bao X. ; Zhu Q. ; Zhu D. ; Qiu M. ; Sun M. ; Yang R. J.Mater.Chem.C 2015, 3, 10070.
119 Du Y. ; Cai H. ; Ni J. ; Li J. ; Yu H. ; Sun X. ; Wu Y. ; Wen H. ; Zhang J. RSC Adv 2015, 5, 66981.
120 Nagarjuna P. ; Narayanaswamy K. ; Swetha T. ; Rao G.H. ; Singh S.P. ; Sharma G. Electrochim.Acta 2015, 151, 21.
121 Kim G.W. ; Kim J. ; Lee G.Y. ; Kang G. ; Lee J. ; Park T. Adv.Energy Mater 2015, 5, 1500471.
122 Heo J.H. ; Im S.H. ; Noh J.H. ; Mandal T.N. ; Lim C.S. ; Chang J.A. ; Lee Y.H. ; Kim H.J. ; Sarkar A. ; Nazeeruddin M.K. Nat.Photonics 2013, 7, 486.
123 Li X. ; Liu X. ; Wang X. ; Zhao L. ; Jiu T. ; Fang J. J.Mater. Chem.A 2015, 3, 15024.
124 Jeon N.J. ; Noh J.H. ; Yang W.S. ; Kim Y.C. ; Ryu S. ; Seo J. ; Seok S.I. Nature 2015, 517, 476.
125 Guo Y. ; Liu C. ; Inoue K. ; Harano K. ; Tanaka H. ; Nakamura E. J.Mater.Chem.A 2014, 2, 13827.
126 Conings B. ; Baeten L. ; Jacobs T. ; Dera R. ; D'Haen J. ; Manca J. ; Boyen H.G. APL Mater 2014, 2, 081505.
127 Matteocci F. ; Razza S. ; Di Giacomo F. ; Casaluci S. ; Mincuzzi G. ; Brown T.M. ; D'Epifanio A. ; Licoccia S. ; Di Carlo A. Phys.Chem.Chem.Phys 2014, 16, 3918.
128 Di Giacomo F. ; Razza S. ; Matteocci F. ; D'Epifanio A. ; Licoccia S. ; Brown T.M. ; Di Carlo A. J.Power Sources 2014, 251, 152.
129 Guo Y. ; Liu C. ; Tanaka H. ; Nakamura E. J.Phys.Chem. Lett 2015, 6, 535.
130 Chiang C.H. ; Tseng Z.L. ; Wu C.G. J.Mater.Chem.A 2014, 2, 15897.
131 Jeng J.Y. ; Chiang Y.F. ; Lee M.H. ; Peng S.R. ; Guo T.F. ; Chen P. ; Wen T.C. Adv.Mater 2013, 25, 3727.
132 Malinkiewicz O. ; Yella A. ; Lee Y.H. ; Espallargas G.M. ; Graetzel M. ; Nazeeruddin M.K. ; Bolink H.J. Nat.Photonics 2014, 8, 128.
133 Chiang Y.F. ; Jeng J.Y. ; Lee M.H. ; Peng S.R. ; Chen P. ; Guo T.F. ; Wen T.C. ; Hsu Y.J. ; Hsu C.M. Phys.Chem. Chem.Phys 2014, 16, 6033.
134 Sun S. ; Salim T. ; Mathews N. ; Duchamp M. ; Boothroyd C. ; Xing G. ; Sum T.C. ; Lam Y.M. Energy Environ.Sci 2014, 7, 399.
135 Zhang Y. ; Liu W. ; Tan F. ; Gu Y. J.Power Sources 2015, 274, 1224.
136 Chen H. ; Pan X. ; Liu W. ; Cai M. ; Kou D. ; Huo Z. ; Fang X. ; Dai S. Chem.Commun 2013, 49, 7277.
137 Habisreutinger S.N. ; Leijtens T. ; Eperon G.E. ; Stranks S. D. ; Nicholas R.J. ; Snaith H.J. Nano Lett 2014, 14, 5561.
138 Habisreutinger S.N. ; Leijtens T. ; Eperon G.E. ; Stranks S. D. ; Nicholas R.J. ; Snaith H.J. J.Phys.Chem.Lett 2014, 5, 4207.
139 Chiang C.H. ; Tseng Z.L. ; Wu C.G. J.Mater.Chem.A 2014, 2, 15897.
140 Wang Z.K. ; Li M. ; Yuan D.X. ; Shi X.B. ; Ma H. ; Liao L. S. ACS Appl.Mater.Interfaces 2015, 7, 9645.
141 Hou F. ; Su Z. ; Jin F. ; Yan X. ; Wang L. ; Zhao H. ; Zhu J. ; Chu B. ; Li W. Nanoscale 2015, 7, 9427.
142 Lim K.G. ; Kim H.B. ; Jeong J. ; Kim H. ; Kim J.Y. ; Lee T. W. Adv.Mater 2014, 26, 6461.
143 Choi H. ; Mai C.K. ; Kim H.B. ; Jeong J. ; Song S. ; Bazan G.C. ; Kim J.Y. ; Heeger A.J. Nat.Commun 2015, 6, 7348.
144 Mei A. ; Li X. ; Liu L. ; Ku Z. ; Liu T. ; Rong Y. ; Xu M. ; Hu M. ; Chen J. ; Yang Y. Science 2014, 345, 295.
145 Li Y. ; Ye S. ; Sun W. ; Yan W. ; Li Y. ; Bian Z. ; Liu Z. ; Wang S. ; Huang C. J.Mater.Chem.A 2015, 3, 18389.
[1] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.
[2] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 213-218.
[3] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[6] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[7] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[8] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[9] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1288-1296.
[10] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.
[11] Kang YUAN,Xue ZHOU,Jian-Zhong DU. Synthesis and Characterization of Thermo-Responsive Polypeptide-Based Vesicles with Photo-Cross-Linked Membranes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 656-660.
[12] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 314-328.
[13] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[14] Tong PEI,Kai PENG,Xin-Yi CAI,Liang-Jie YUAN,Jiang-Bin XIA. Synthesis of Poly(bis-3, 4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2550-2558.
[15] Shao-Qing ZHANG,Jian-Hui HOU. Rational Design Strategies for Polymer Donors for Applications in Non-Fullerene Organic Photovoltaic Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2327-2338.