Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (6): 1371-1382    DOI: 10.3866/PKU.WHXB201603155
REVIEW     
Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System
Bo-Cai CHEN,Yang SHEN,Jian-Hong WEI*(),Rui XIONG,Jing SHI
Download: HTML     PDF(8287KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphitic carbon nitride (g-C3N4) is a promising photocatalyst because of its low cost, high stability, and visible-light-induced photocatalytic activity. Z-scheme photocatalysts based on g-C3N4 (Z-g-C3N4) have attracted considerable attention because of their lower recombination rate of electron-holes and higher catalytic efficiency. In this review, the reaction mechanism of Z-scheme photocatalysis and the recent progress in Z-gC3N4 are introduced and reviewed. The applications of Z-g-C3N4, such as water splitting and CO2 reduction, are presented. The key factors that affect the photocatalytic performance, such as pH and the presence of electron mediators, are discussed. Moreover, the current challenges are described and the future development of Z-gC3N4 is forecast.



Key wordsg-C3N4      Z-scheme      Photocatalytic system      Charge transfer      Research progress     
Received: 06 January 2016      Published: 15 March 2016
MSC2000:  O643  
Fund:  National Natural Science Foundation of China(51272185);National Key Basic Research Program of China(973)(2012CB821404)
Corresponding Authors: Jian-Hong WEI     E-mail: jhwei@whu.edu.cn
Cite this article:

Bo-Cai CHEN,Yang SHEN,Jian-Hong WEI,Rui XIONG,Jing SHI. Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System. Acta Physico-Chimica Sinca, 2016, 32(6): 1371-1382.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603155     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1371

Fig 1 Z-scheme of electron transport mechanism in plant photosynthesis progress 42 ADP: adenosine diphosphate; ATP: adenosine triphosphate; PC: plastocyanin; A0: phylloquinone; A1: vitamin K1; FX, FA/FB: primary electron acceptor of PS Ⅰ; FD: ferredoxin; NADP+: nicotinamide adenine dinucleotide phosphate
Fig 2 Electron transfer schematic diagram for ionic-state Z-scheme in photocatalytic reaction CB: conduction band; VB: valence band
Fig 3 Electron transfer schematic diagram for all-solid-state Z-scheme photocatalytic reaction (a) no electron mediator in the system; (b) with electron mediator in the system
PS Ⅰ (available wavelength/nm)PS Ⅱ (available wavelength/nm)Light source (wavelength/nm)Electron mediatorApplicationActivityRef.
g-C3N4 (< 460)TiO2 (< 387)15 WUV lamp 365Dea (HCHO)ηHCHOb = 94% (1 h)55
g-C3N4 (< 460)Ti3+/TiO2 (<410)11 WINCc lamp (420-800)De (phenol)ηphenol = 74% (7 h)56
g-C3N4 (< 464)WO3 (< 461)LED (ca 435)De (C2H5OH)at least 600×10-6
acetaldehyde (48 h)
39
g-C3N4 (< 460)Ag3PO4 (< 530)300 W Xe lamp (300-800)De (ethylene) ηC2H4≈100%(3 h)57
g-C3N4 (< 460)ZnO (<387)300 W Xe-arc lamp (300-800)CO2 reductionCH3OH production rate
0.6 μmol·h-1 ·g-1
58
g-C3N4 (< 464)V2O5 (< 558)250 WXe lamp (>420)De (TCd) ηTC = 95.5%(1h)59
g-C3N4 (< 460)AgBr (< 550)300 W Xe lamp (400-680)AgDe (RhBe, MOf)ηRhB = 95% (10 min)
ηMO=95% (10 min)
60
g-C3N4 (< 460)Bi2O3 (< 442)500 W Xe lamp (400-470)De (MBg, RhB) ηMB = 96% (2 h)*
ηRhB = 70% (2 h)*
61
g-C3N4 (< 450)Cr-doped SrTiO3 (< 575)500 WXe lamp (>420)De (RhB)ηRhB = 99% (30 min)*62
g-C3N4 (< 460)Ag2CO3 (< 560)*300 WXe lamp (>400)AgDe (RhB)nearly 100% (40 min)63
g-C3N4 (< 455)N-doped SrTiO3 (< 416)300 W Xe lamp (400-700)De (RhB)ηRhB = 98% (30 min)*64
g-C3N4 (< 476)BiVO4 (< 506)500 WXe lamp (>420)De (RhB)ηRhB = 85% (5 h)65
g-C3N4 (< 446)AgBr (< 494)300 WXe lamp (>420)De (MO)ηMO = 78.9% (2 h)66
g-C3N4 (< 460)MoO3 (< 442)350 WXe lamp (>420)De (MO)ηMO = 88% (2 h)*67
g-C3N4 (< 461)BiOCl (< 344)300 WXe lamp (>420)De (RhB)ηRhB = 99% (1 h)68
g-C3N4 (< 460)Ag3PO4 (< 506)300 W Xe-arc lamp (420-800)De (MO)ηMO = 96.8% (0.5 h)69
g-C3N4 (< 460)sulfur-doped TiO2 (< 450)500 WXe lamp (>ca 400)CO2 reduction708×10-6(24h)70
Bi2WO6(<451)g-C3N4 (< 461)300 WXe lamp (>420)CO2 reductionCO yield 4.15 μmol (8 h)71
g-C3N4 (< 460)SnO2-x (< 496)350 W Xe lamp (420-800)CO2 reduction22.7 μmol·h-1·g-172
g-C3N4 (< 473)Ag3PO4 (< 523)500 WXe lamp (>420)AgCO2 reduction57.5 μmol·h-1·g-173
sulfur-dopedCdS (< 560)300 WXe lamp (>420)Auwater splittingH2 yield 530 pmol (5 h)74
g-C3N4 (< 450)
g-C3N4 (< 462)
Ag3PO4 (< 550)*LED visible-lightAgwater splittingO2 yield
20 μmol·L-1 (20 min)
75
g-C3N4 (< 460)WO3 (< 443)250 W UV-Vis lamp (> 420)rGOhwater splitting O2 yield ca 17.5μmol
H2 yield 35 μmol (20 h)
76
Table 1 Summary of the application of Z-g-C3N4 in the photocatalytic field so far
Fig 4 Schematic illustration for the charge transfer and separation in g-C3N4-TiO2 Z-scheme photocatalysts under UV light irradiation55
Fig 5 Proposed photodegradation RhB on g-C3N4/Ag2CO3 composite63
Fig 6 Possible electron tranfer mechanism for SnO2-x/g-C3N4 under visible light illumination73
Fig 7 Proposed mechanism for the photocatalytic decomposition of water by C3N4-WO3 composite with or without the mediation of rGO76
Fig 8 Photo-generated carriers distribution schematic diagram at contact interface of g-C3N4 and different facets of TiO2 hollow nanoboxs105
1 Xi Z. H. ; Li C. J. ; Zhang L. ; Xing M. Y. ; Zhang J. L. Int. J. Hydrog. Energy 2014, 39, 6345.
2 Ma B. J. ; Yang J. H. ; Han H. X. ; Wang J. T. ; Zhang X. H. ; Li C. J.Phys. Chem. C 2010, 114, 12818.
3 Liu J. H. Mod. Chem. Ind 2006, 26 (2), 10.
3 刘江华. 现代化工, 2006, 26 (2), 10.
4 Ladomenou K. ; Natali M. ; Iengo E. ; Charalampidis G. ; Scandola F. ; Coutsolelos A. G. Coord. Chem. Rev 2015, 304, 38.
5 Zhang N. ; Zhang Y. H. ; Xu Y. J. Nanoscale 2012, 4, 5792.
6 Wang H. L. ; Zhang L. S. ; Chen Z. G. ; Hu J. Q. ; Li S. J. ; Wang Z. H. ; Liu J. S. ; Wang X. C. Chem. Soc. Rev 2014, 43, 5234.
7 Suarez C. M. ; Hernández S. ; Russo N. Appl. Catal. A-Gen 2015, 504, 158.
8 Das S. ; Daud W. M. A. W. Renew. Sust. Energ. Rev 2014, 39, 765.
9 Grewe T. ; Tüysüz H. ACS Appl. Mater. Interfaces 2015, 7, 23153.
10 Zhou W. ; Li W. ; Wang J. Q. ; Qu Y. ; Yang Y. ; Xie Y. ; Zhang K. F. ; Wang L. ; Fu H. G. ; Zhao D. Y. J.Am. Chem. Soc 2014, 136, 9280.
11 Liu B. ; Liu L. M. ; Lang X. F. ; Wang H. Y. ; Lou X. W. ; Aydil E. S. Energy Environ. Sci 2014, 7, 2592.
12 Tu W. G. ; Zhou Y. ; Zou Z. G. Adv. Mater 2014, 26, 4607.
13 Jiang R. B. ; Li B. X. ; Fang C. H. ; Wang J. F. Adv. Mater 2014, 26, 5274.
14 Yu J. G. ; Low J. X. ; Xiao W. ; Zhou P. ; Jaroniec M. J.Am. Chem. Soc 2014, 136, 8839.
15 Sun J. J. ; Li X. Y. ; Zhao Q. D. ; Ke J. ; Zhang D. K. J.Phys. Chem. C 2014, 118, 10113.
16 Quici N. ; Vera M. L. ; Choi H. ; Puma G. L. ; Dionyisou D. D. ; Litter M. I. ; Destaillats H. Appl. Catal. B 2010, 95, 312.
17 Nie L. H. ; Yu J. G. ; Li X. Y. ; Cheng B. ; Liu G. ; Jaroniec M. Environ. Sci. Technol 2013, 47, 2777.
18 Zhang G. ; Kim G. ; Choi W. Energy Environ. Sci 2014, 7, 954.
19 Wang C. C. ; Li J. R. ; Lv X. L. ; Zhang Y. Q. ; Guo G. S. Energy Environ. Sci 2014, 7, 2831.
20 Soares P. A. ; Silva T. F. C. V. ; Manenti D. R. ; Souza S. M. A. G. U. ; Boaventura R. A. R. ; Vilar V. J. P. Environ. Sci. Pollut. Res 2014, 21, 932.
21 Lei Y. B. ; Liu P. C. ; Zhu W. W. ; Zhang J. Y. ; Du D. L. ; Xiao X. Environ. Prot. Chem. Ind 2015, 35 (3), 253.
21 雷育斌; 刘鹏程; 朱雯雯; 章佳莹; 杜道林; 肖翔. 化工环保, 2015, 35 (3), 253.
22 Fujishima A. ; Honda K. Nature 1972, 238, 37.
23 Liu D. ; Li Z. H. ; Wang W. Q. ; Wang G. Q. ; Liu D. J.Alloy. Compd 2016, 654, 491.
24 Niu P. ; Liu G. ; Cheng H. M. J.Phys. Chem. C 2012, 116, 11013.
25 Zhang J. S. ; Wang B. ; Wang X. C. Acta Phys. -Chim. Sin 2013, 29 (9), 1865.
25 张金水; 王博; 王心晨. 物理化学学报, 2013, 29 (9), 1865.
26 Cao S. W. ; Low J. X. ; Yu J. G. ; Jaroniec M. Adv. Mater 2015, 27, 2150.
27 Zheng Y. ; Lin L. H. ; Wang B. ; Wang X. C. Angew. Chem. Int. Edit 2015, 54, 12868.
28 Wang X. C. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nature Mater 2009, 8, 76.
29 Yan S. C. ; Lv S. B. ; Li Z. S. ; Zou Z. G. Dalton Trans 2010, 39, 1488.
30 Dong F. ; Wu L. W. ; Sun Y. J. ; Fu M. ; Wu Z. B. ; Lee S. C. J. Mater. Chem 2011, 21, 15171.
31 Ma L. T. ; Fan H. Q. ; Li M. M. ; Tian H. ; Fang J. W. ; Dong G. Z. J.Mater. Chem. A 2015, 3, 22404.
32 Wang Y. ; Zhang J. S. ; Wang X. C. ; Antonietti M. ; Li H. Angew. Chem. Int. Edit 2010, 49, 3356.
33 Zhang Y. J. ; Mori T. ; Niu L. ; Ye J. H. Energy Environ. Sci 2011, 4, 4517.
34 Liu G. ; Niu P. ; Sun C. H. ; Smith S. C. ; Chen Z. G. ; Lu G. Q. ; Cheng H. M. J.Am. Chem. Soc 2010, 132, 11642.
35 Zhou P. ; Wu J. H. ; Yu W. L. ; Zhao G. H. ; Fang G. J. ; Cao S. W. Appl. Surf. Sci 2014, 319, 167.
36 Lo C. C. ; Huang C. W. ; Liao C. H. ; Wu J. C. S. Int. J.Hydrog. Energy 2010, 35, 1523.
37 Iwase A. ; Ng Y. H. ; Ishiguro Y. ; Kudo A. ; Amal R. J.Am. Chem. Soc 2011, 133, 11054.
38 Chen S. F. ; Hu Y. F. ; Meng S. G. ; Fu X. L. Appl. Catal. B 2014, 150, 564.
39 Jin Z. Y. ; Murakami N. ; Tsubota T. ; Ohno T. Appl. Catal. B 2014, 150, 479.
40 Yun H. J. ; Lee H. ; Kim N. D. ; Lee D. M. ; Yu S. J. ; Yi J. H. ACS Nano 2011, 5, 4084.
41 Wu W. H. Phytophysiology Beijing: Science Press, 2003, 117- 176.
41 武维华. 植物生理学, 北京: 科学出版社, 2003, 117- 176.
42 Mohapatra P. K. ; Singh N. R. Photosynth. Res 2015, 123, 105.
43 Suzuki H. ; Tomita O. ; Higashi M. ; Abe R. Catal. Sci. Technol 2015, 5, 2640.
44 Sasaki Y. ; Iwase A. ; Kato H. ; Kudo A. J.Catal 2008, 259, 133.
45 Miseki Y. ; Fujiyoshi S. ; Gunji T. ; Sayama K. Catal. Sci. Technol 2013, 3, 1750.
46 Abe R. ; Shinmei K. ; Koumura N. ; Hara K. ; Ohtani B. J.Am. Chem. Soc 2013, 135, 16872.
47 Sasaki Y. ; Kato H. ; Kudo A. J.Am. Chem. Soc 2013, 135, 5441.
48 Maeda K. ACS Catal 2013, 3, 1486.
49 Wan K. J. ; Adinaveen T. ; Vijaya J. J. ; Selvam N. C. S. RSC Adv 2016, 6, 10487.
50 Zhang L. J. ; Li S. ; Liu B. K. ; Wang D. J. ; Xie T. F. ACS Catal 2014, 4, 3724.
51 Sekizawa K. ; Maeda K. ; Domen K. ; Koike K. ; Ishitani O. J.Am. Chem. Soc 2013, 135, 4596.
52 Zhou P. ; Yu J. G. ; Jaroniec M. Adv. Mater 2014, 26, 4920.
53 Li P. ; Li H. J. ; Tu W. G. ; Zhou Y. ; Zou Z. G. Acta Phys. Sin 2015, 64 (9), 094209.
53 李平; 李海金; 涂文广; 周勇; 邹志刚. 物理学报, 2015, 64 (9), 094209.
54 Abe R. Bull. Chem. Soc. Jpn 2011, 84 (10), 1000.
55 Yu J. G. ; Wang S. H. ; Low J. X. ; Xiao W. Phys. Chem. Chem. Phys 2013, 15, 16883.
56 Liao W. J. ; Murugananthan M. ; Zhang Y. R. Phys. Chem. Chem. Phys 2015, 17, 8877.
57 Chen X. X. ; Huang X. T. ; Yi Z. G. Chem. Eur. J 2014, 20, 17590.
58 Yu W. L. ; Xu D. F. ; Peng T. Y. J.Mater. Chem. A 2015, 3, 19936.
59 Hong Y. Z. ; Jiang Y. H. ; Li C. S. ; Fan W. Q. ; Yan X. ; Yan M. ; Shi W. D. Appl. Catal. B 2016, 180, 663.
60 Yang Y. X. ; Guo W. ; Guo Y. N. ; Zhao Y. H. ; Yuan X. ; Guo Y. H. J.Hazard. Mater 2014, 271, 150.
61 Zhang J. F. ; Hu Y. F. ; Jiang X. L. ; Chen S. F. ; Meng S. G. ; Fu X. L. J.Hazard. Mater 2014, 280, 713.
62 Chen X. ; Tan P. F. ; Zhou B. H. ; Dong H. G. ; Pan J. ; Xiong X. J.Alloy. Compd 2015, 647, 456.
63 Shi L. ; Liang L. ; Wang F. X. ; Liu M. S. ; Sun J. M. J.Mater. Sci 2015, 50, 1718.
64 Kumar S. ; Tonda S. ; Baruah A. ; Kumar B. ; Shanker V. Dalton Trans 2014, 43, 16105.
65 Tian N. ; Huang H. W. ; He Y. ; Guo Y. X. ; Zhang T. R. ; Zhang Y. H. Dalton Trans 2015, 44, 4297.
66 Feng Y. ; Shen J. C. ; Cai Q. F. ; Yang H. ; Shen Q. H. New J.Chem 2015, 39, 1132.
67 He Y. M. ; Zhang L. H. ; Wang X. X. ; Wu Y. ; Lin H. J. ; Zhao L. H. ; Weng W. Z. ; Wan H. L. ; Fan M. H. RSC Adv 2014, 4, 13610.
68 Bai Y. ; Wang P. Q. ; Liu J. Y. ; Liu X. J. RSC Adv 2014, 4, 19456.
69 Meng S. G. ; Ning X. F. ; Zhang T. ; Chen S. F. ; Fu X. L. Phys. Chem. Chem. Phys 2015, 17, 11577.
70 Kondo K. ; Murakami N. ; Ye C. ; Tsubota T. ; Ohno T. Appl. Catal. B 2013, 142, 362.
71 Li M. L. ; Zhang L. X. ; Fan X. Q. ; Zhou Y. J. ; Wu M. Y. ; Shi J. L. J.Mater. Chem. A 2015, 3, 5189.
72 He Y. M. ; Zhang L. H. ; Fan M. H. ; Wang X. X. ; Walbridge M. L. ; Nong Q. Y. ; Wu Y. ; Zhao L. H. Sol. Energy Mater. Sol. Cells 2015, 137, 175.
73 He Y. M. ; Zhang L. H. ; Teng B. T. ; Fan M. H. Environ. Sci. Technol 2015, 49, 649.
74 Li W. B. ; Feng C. ; Dai S. Y. ; Yue J. G. ; Hua F. X. ; Hou H. Appl. Catal. B 2015, 168, 465.
75 Yang X. F. ; Chen Z. P. ; Xu J. S. ; Tang H. ; Chen K. M. ; Jiang Y. ACS Appl. Mater. Interfaces 2015, 7, 15285.
76 Zhao G. X. ; Huang X. B. ; Fina F. ; Zhang G. ; Irvine J. T. S. Catal. Sci. Technol 2015, 5, 3416.
77 Zhu J. F. ; Z?ch M. Curr. Opin. Colloid Interface Sci 2014, 14, 260.
78 Chen Z. H. ; Wang W. L. ; Zhang Z. G. ; Fang X. M. J.Phys. Chem. C 2013, 117, 19346.
79 Wang Q. ; Li Y. B. ; Hisatomi T. ; Nakabayashi M. ; Shibata N. ; Kubota J. ; Domen K. J.Catal 2015, 328, 308.
80 Yamada Y. ; Nomura A. ; Tadokoro H. ; Fukuzumi S. Catal. Sci. Technol 2015, 5, 428.
81 Lasa, H. I. D.; Rosales, B. S. Photocatalytic Technologies; Science Press: Beijing, 2010; pp 111-144; translated by Liu, Y., Liu, C. Y.
81 Lasa, H. I. D.; Rosales, B. S.光催化技术.刘云,刘春艳,译.北京:科学出版社, 2010: 111-114.
82 Katsumata H. ; Tachi Y. ; Suzuki T. ; Kaneco S. RSC Adv 2014, 4, 21405.
83 Yang X. F. ; Tang H. ; Xu J. S. ; Antonietti M. ; Shalom M. ChemSusChem 2015, 8, 1350.
84 Tam W. W. S. ; Wong T. W. ; Wong A. H. S. Atmos. Environ 2015, 120, 360.
85 Rodopoulou S. ; Samoli E. ; Chalbot M. C. G. ; Kavouras I. G. Sci. Total Environ 2015, 536, 872.
86 Farhanian D. ; Haghighat F. Build Environ 2014, 72, 34.
87 Yang Z. Z. ; Cai T. J. Chin. J.Public Health 2003, 19 (6), 765.
87 杨振洲; 蔡同建. 中国公共卫生, 2003, 19 (6), 765.
88 Tang Z. W. ; Cheng J. L. ; Zhang H,Y. ; Fan X. Y. J.Hydraul. Eng 2009, 40 (9), 1064.
88 唐阵武; 程家丽; 张化永; 范修远. 水利学报, 2009, 40 (9), 1064.
89 Chen S. F. ; Hu Y. F. ; Jiang X. L. ; Meng S. G. ; Fu X. L. Mater. Chem. Phys 2015, 149, 512.
90 Wang J. C. ; Zhang L. ; Fang W. X. ; Ren J. ; Li Y. Y. ; Yao H. C. ; Wang J. S. ; Li Z. J. ACS Appl. Mater. Interfaces 2015, 7, 8631.
91 Liu Y. S. ; Ji G. B. ; Dastageer M. A. ; Zhu L. ; Wang J. Y. ; Zhang B. ; Chang X. F. ; Gondal M. A. RSC Adv 2014, 4, 56961.
92 Sun Y. H. Pet. Chem. Energy Cons 2011, 2, 42.
92 孙延辉. 石油和化工节能, 2011, 2, 42.
93 Ohno T. ; Murakami N. ; Koyanagi T. ; Yang Y. J.CO2 Util 2014, 6, 17.
94 Shang X. K. ; Liu R. J. ; Zhang G. J. ; Zhang S. J. ; Cao H. B. ; Gu Z. J. New J.Chem 2014, 38, 1315.
95 Miseki Y. ; Kusama H. ; Sugihara H. ; Sayama K. J.Phys. Chem. Lett 2010, 1, 1196.
96 Xu Y. ; Schoonen M. Am. Mineral 2000, 85, 543.
97 Wang H. Y. ; Jiang Z. P. ; Yang H. W. Res. Environ. Sci 2008, 21 (5), 14.
97 王海燕; 蒋展鹏; 杨宏伟. 环境科学研究, 2008, 21, 5- 14.
98 Suzuki T. M. ; Iwase A. ; Tanaka H. ; Sato S. ; Kudo A. ; Morikawa T. J.Mater. Chem. A 2015, 3, 13283.
99 Kato H. ; Sasaki Y. ; Shirakura N. ; Kudo A. J.Mater. Chem. A 2013, 1, 12327.
100 Zhou H. ; Ding L. ; Fan T. X. ; Ding J. ; Zhang D. ; Guo Q. X. Appl. Catal. B 2014, 147, 221.
101 Min Y. L. ; He G,Q. ; Xu Q. J. ; Chen Y. C. J.Mater. Chem. A 2014, 2, 1294.
102 Mogal S. I. ; Gandhi V. G. ; Mishra M. ; Tripathi S. ; Shripathi T. ; Joshi P. A. ; Shah D. O. Ind. Eng. Chem. Res 2014, 53, 5749.
103 Katsumata H. ; Sakai T. ; Suzuki T. ; Kaneco S. Ind. Eng. Chem. Res 2014, 53, 8018.
104 Zhu Z. F. ; Du J. ; Li J. Q. ; Zhang Y. L. ; Liu D,G. ; Yu H. G. J.Funct. Mater 2011, 42 (10), 1916.
104 朱振峰; 杜娟; 李军奇; 张艳丽; 刘佃光; 于红光. 功能材料, 2011, 42 (10), 1916.
105 Huang Z. A. ; Sun Q. ; Lv K. L. ; Zhang Z. H. ; Li M. ; Li B. Appl. Catal. B 2015, 164, 420.
106 Chen S. H. ; Peng F. ; Wang H. J. Mod. Chem. Ind 2004, 24 (7), 24.
106 陈水辉; 彭峰; 王红娟. 现代化工, 2004, 24 (7), 24.
107 Modak B. ; Ghosh S. K. J.Phys. Chem. B 2015, 119, 11089.
108 Yin R. ; Luo Q. Z. ; Wang D. S. ; Sun H. T. ; Li Y. Y. ; Li X. Y. ; An J. J.Mater. Sci 2014, 49, 6067.
109 Zang Y. P. ; Li L. P. ; Li X. G. ; Lin R. ; Li G. G. Chem. Eng. J 2014, 246, 277.
110 Wang K. ; Li Q. ; Liu B. S. ; Cheng B. ; Ho W. K. ; Yu J. G. Appl. Catal. B 2015, 176, 44.
[1] Chun-Dong SONG,Jing ZHANG,Ying GAO,Yuan-Yuan LU,Fang-Fang WANG. Synthesis Direct Z-Scheme CuS-WO3 Photocatalysts Based on an Element-Reaction Route and Their Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1891-1897.
[2] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.
[3] Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.
[4] . Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2532-2541.
[5] Yi WANG,Nan-Fang JIA,Sheng-Li QI,Guo-Feng TIAN,De-Zhen WU. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2227-2236.
[6] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.
[7] Xue ZHANG,Yang HAN,Shuang-Zhi CHAI,Nan-Tao HU,Zhi YANG,Hui-Juan GENG,Hao WEI. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1330-1346.
[8] LIU Xue-Sen, LEI Dan, GAN Li-Hua. Structures and Properties of Endohedral Metallofullerene Sc2S@C86[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 929-934.
[9] ZHU Lin, MAXin-Guo, LIU Na, XU Guo-Wang, HUANG Chu-Yun. Band Structure Modulation and Carrier Transport Process of g-C3N4 Doped with Alkali Metals[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2488-2494.
[10] HAO Xu-Qiang, YANG Hao, JIN Zhi-Liang, XU Jing, MIN Shi-Xiong, Lü Gong-Xuan. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2581-2592.
[11] YANG Lin, LI Yang, CHEN Shu, ZHANG Jing, ZHANG Min, WANG Peng. Ultrafast Spectroscopic Studies of Excited State Relaxation and Electron Injection in Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 329-336.
[12] HUANG Bin, DAI Yu, BAN Xin-Xin, JIANG Wei, ZHANG Zhao-Hang, SUN Kai-Yong, LIN Bao-Ping, SUN Yue-Ming. Thermally Activated Delayed Fluorescence Materials Based on Triphenylamine/Diphenyl Sulfone[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1621-1628.
[13] REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1215-1218.
[14] LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo. PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 764-770.
[15] LI Xiao-Jin, SHENG Jia-Yi, CHEN Hai-Hang, XU Yi-Ming. Improved Photocatalytic Degradation of Phenol over β-Bi2O3 Modified Bi2WO6 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 540-544.