ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(6)>> 1371-1382     doi: 10.3866/PKU.WHXB201603155         中文摘要
Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System
CHEN Bo-Cai, SHEN Yang, WEI Jian-Hong, XIONG Rui, SHI Jing
Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
Full text: PDF (8287KB) HTML Export: BibTeX | EndNote (RIS)

Graphitic carbon nitride (g-C3N4) is a promising photocatalyst because of its low cost, high stability, and visible-light-induced photocatalytic activity. Z-scheme photocatalysts based on g-C3N4 (Z-g-C3N4) have attracted considerable attention because of their lower recombination rate of electron-holes and higher catalytic efficiency. In this review, the reaction mechanism of Z-scheme photocatalysis and the recent progress in Z-g-C3N4 are introduced and reviewed. The applications of Z-g-C3N4, such as water splitting and CO2 reduction, are presented. The key factors that affect the photocatalytic performance, such as pH and the presence of electron mediators, are discussed. Moreover, the current challenges are described and the future development of Z-g-C3N4 is forecast.

Keywords: g-C3N4   Z-scheme   Photocatalytic system   Charge transfer   Research progress  
Received: 2016-01-06 Accepted: 2016-03-14 Publication Date (Web): 2016-03-15
Corresponding Authors: WEI Jian-Hong Email:

Fund: The project was supported by the National Natural Science Foundation of China (51272185) and National Key Basic Research Program of China (973)(2012CB821404).

Cite this article: CHEN Bo-Cai, SHEN Yang, WEI Jian-Hong, XIONG Rui, SHI Jing. Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System[J]. Acta Phys. -Chim. Sin., 2016,32 (6): 1371-1382.    doi: 10.3866/PKU.WHXB201603155

(1) Xi, Z. H.: Li, C. J.: Zhang, L.: Xing, M. Y.: Zhang J. L. Int. J. Hydrog. Energy 2014, 39, 6345. doi: 10.1016/j.ijhydene.2014.01.209
(2) Ma, B. J.: Yang, J. H.: Han, H. X.: Wang, J. T.: Zhang, X. H.: Li, C. J. Phys. Chem. C 2010, 114, 12818. doi: 10.1021/jp103722j
(3) Liu, J. H. Mod. Chem. Ind. 2006, 26 (2), 10. [刘江华. 现代化工, 2006, 26 (2), 10.]
(4) Ladomenou, K.: Natali, M.: Iengo, E.: Charalampidis, G.: Scandola, F.: Coutsolelos, A. G. Coord. Chem. Rev. 2015, 304, 38.
(5) Zhang, N.: Zhang, Y. H.: Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k
(6) Wang, H. L.: Zhang, L. S.: Chen, Z. G.: Hu, J. Q.: Li, S. J.: Wang, Z. H.: Liu, J. S.: Wang, X. C. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/C4CS00126E
(7) Suarez, C. M.: Hernández, S.: Russo, N. Appl. Catal. A-Gen. 2015, 504, 158. doi: 10.1016/j.apcata.2014.11.044
(8) Das, S.: Daud, W. M. A.W. Renew. Sust. Energ. Rev. 2014, 39, 765. doi: 10.1016/j.rser.2014.07.046
(9) Grewe, T.: Tü: ysü: z, H. ACS Appl. Mater. Interfaces 2015, 7, 23153. doi: 10.1021/acsami.5b06965
(10) Zhou, W.: Li, W.: Wang, J. Q.: Qu, Y.: Yang, Y.: Xie, Y.: Zhang, K. F.: Wang, L.: Fu, H. G.: Zhao, D. Y. J. Am. Chem. Soc. 2014, 136, 9280. doi: 10.1021/ja504802q
(11) Liu, B.: Liu, L. M.: Lang, X. F.: Wang, H. Y.: Lou, X.W.: Aydil, E. S. Energy Environ. Sci. 2014, 7, 2592. doi: 10.1039/C4EE00472H
(12) Tu, W. G.: Zhou, Y.: Zou, Z. G. Adv. Mater. 2014, 26, 4607. doi: 10.1002/adma.v26.27
(13) Jiang, R. B.: Li, B. X.: Fang, C. H.: Wang, J. F. Adv. Mater. 2014, 26, 5274. doi: 10.1002/adma.201400203
(14) Yu, J. G.: Low, J. X.: Xiao, W.: Zhou, P.: Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787
(15) Sun, J. J.: Li, X. Y.: Zhao, Q. D.: Ke, J.: Zhang, D. K. J. Phys. Chem. C 2014, 118, 10113. doi: 10.1021/jp5013076
(16) Quici, N.: Vera, M. L.: Choi, H.: Puma, G. L.: Dionyisou, D.D.: Litter, M. I.: Destaillats, H. Appl. Catal. B 2010, 95, 312. doi: 10.1016/j.apcatb.2010.01.009
(17) Nie, L. H.: Yu, J. G.: Li, X. Y.: Cheng, B.: Liu, G.: Jaroniec, M.Environ. Sci. Technol. 2013, 47, 2777. doi: 10.1021/es3045949
(18) Zhang, G.: Kim, G.: Choi, W. Energy Environ. Sci. 2014, 7, 954. doi: 10.1039/c3ee43147a
(19) Wang, C. C.: Li, J. R.: Lv, X. L.: Zhang, Y. Q.: Guo, G. S.Energy Environ. Sci. 2014, 7, 2831. doi: 10.1039/C4EE01299B
(20) Soares, P. A.: Silva, T. F. C. V.: Manenti, D. R.: Souza, S. M.A. G. U.: Boaventura, R. A. R.: Vilar, V. J. P. Environ. Sci. Pollut. Res. 2014, 21, 932. doi: 10.1007/s11356-013-1934-0
(21) Lei, Y. B.: Liu, P. C.: Zhu, W.W.: Zhang, J. Y.: Du, D. L.: Xiao, X. Environ. Prot. Chem. Ind. 2015, 35 (3), 253. [雷育斌, 刘鹏程, 朱雯雯, 章佳莹, 杜道林, 肖翔. 化工环保, 2015, 35
(3), 253.]
(22) Fujishima, A.: Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(23) Liu, D.: Li, Z. H.: Wang, W. Q.: Wang, G. Q.: Liu, D. J. Alloy. Compd. 2016, 654, 491. doi: 10.1016/j.jallcom.2015.09.140
(24) Niu, P.: Liu, G.: Cheng, H. M. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y
(25) Zhang, J. S.: Wang, B.: Wang, X. C. Acta Phys. -Chim. Sin. 2013, 29 (9), 1865. [张金水, 王博, 王心晨. 物理化学学报, 2013, 29 (9), 1865.] doi: 10.3866/PKU.WHXB201306173
(26) Cao, S.W.: Low, J. X.: Yu, J. G.: Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033
(27) Zheng, Y.: Lin, L. H.: Wang, B.: Wang, X. C. Angew. Chem. Int. Edit. 2015, 54, 12868. doi: 10.1002/anie.v54.44
(28) Wang, X. C.: Maeda, K.: Thomas, A.: Takanabe, K.: Xin, G.: Carlsson, J. M.: Domen, K.: Antonietti, M. Nature Mater. 2009, 8, 76. doi: 10.1038/nmat2317
(29) Yan, S. C.: Lv, S. B.: Li, Z. S.: Zou, Z. G. Dalton Trans. 2010, 39, 1488. doi: 10.1039/B914110C
(30) Dong, F.: Wu, L.W.: Sun, Y. J.: Fu, M.: Wu, Z. B.: Lee, S. C. J. Mater. Chem. 2011, 21, 15171. doi: 10.1039/c1jm12844b
(31) Ma, L. T.: Fan, H. Q.: Li, M. M.: Tian, H.: Fang, J.W.: Dong, G. Z. J. Mater. Chem. A 2015, 3, 22404. doi: 10.1039/C5TA05850C
(32) Wang, Y.: Zhang, J. S.: Wang, X. C.: Antonietti, M.: Li, H.Angew. Chem. Int. Edit. 2010, 49, 3356. doi: 10.1002/anie.201000120
(33) Zhang, Y. J.: Mori, T.: Niu, L.: Ye, J. H. Energy Environ. Sci. 2011, 4, 4517. doi: 10.1039/c1ee01400e
(34) Liu, G.: Niu, P.: Sun, C. H.: Smith, S. C.: Chen, Z. G.: Lu, G.Q.: Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k
(35) Zhou, P.: Wu, J. H.: Yu, W. L.: Zhao, G. H.: Fang, G. J.: Cao, S.W. Appl. Surf. Sci. 2014, 319, 167. doi: 10.1016/j.apsusc.2014.05.045
(36) Lo, C. C.: Huang, C.W.: Liao, C. H.: Wu, J. C. S. Int. J. Hydrog. Energy 2010, 35, 1523. doi: 10.1016/j.ijhydene.2009.12.032
(37) Iwase, A.: Ng, Y. H.: Ishiguro, Y.: Kudo, A.: Amal, R. J. Am. Chem. Soc. 2011, 133, 11054. doi: 10.1021/ja203296z
(38) Chen, S. F.: Hu, Y. F.: Meng, S. G.: Fu, X. L. Appl. Catal. B 2014, 150, 564. doi: 10.1016/j.apcatb.2013.12.053
(39) Jin, Z. Y.: Murakami, N.: Tsubota, T.: Ohno, T. Appl. Catal. B 2014, 150, 479. doi: 10.1016/j.apcatb.2013.12.048
(40) Yun, H. J.: Lee, H.: Kim, N. D.: Lee, D. M.: Yu, S. J.: Yi, J. H.ACS Nano 2011, 5, 4084. doi: 10.1021/nn2006738
(41) Wu, W. H. Phytophysiology: Science Press: Beijing, 2003: pp117-176. [武维华. 植物生理学. 北京: 科学出版社, 2003:117-176.]
(42) Mohapatra, P. K.: Singh, N. R. Photosynth. Res. 2015, 123, 105. doi: 10.1007/s11120-014-0034-4
(43) Suzuki, H.: Tomita, O.: Higashi, M.: Abe, R. Catal. Sci. Technol. 2015, 5, 2640. doi: 10.1039/C5CY00128E
(44) Sasaki, Y.: Iwase, A.: Kato, H.: Kudo, A. J. Catal. 2008, 259, 133. doi: 10.1016/j.jcat.2008.07.017
(45) Miseki, Y.: Fujiyoshi, S.: Gunji, T.: Sayama, K. Catal. Sci. Technol. 2013, 3, 1750. doi: 10.1039/c3cy00055a
(46) Abe, R.: Shinmei, K.: Koumura, N.: Hara, K.: Ohtani, B.J. Am. Chem. Soc. 2013, 135, 16872. doi: 10.1021/ja4048637
(47) Sasaki, Y.: Kato, H.: Kudo, A. J. Am. Chem. Soc. 2013, 135, 5441. doi: 10.1021/ja400238r
(48) Maeda, K. ACS Catal. 2013, 3, 1486. doi: 10.1021/cs4002089
(49) Wan, K. J.: Adinaveen, T.: Vijaya, J. J.: Selvam, N. C. S. RSC Adv. 2016, 6, 10487. doi: 10.1039/C5RA24676H
(50) Zhang, L. J.: Li, S.: Liu, B. K.: Wang, D. J.: Xie, T. F. ACS Catal. 2014, 4, 3724. doi: 10.1021/cs500794j
(51) Sekizawa, K.: Maeda, K.: Domen, K.: Koike, K.: Ishitani, O.J. Am. Chem. Soc. 2013, 135, 4596. doi: 10.1021/ja311541a
(52) Zhou, P.: Yu, J. G.: Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288
(53) Li, P.: Li, H. J.: Tu, W. G.: Zhou, Y.: Zou, Z. G. Acta Phys. Sin. 2015, 64 (9), 094209. [李平, 李海金, 涂文广, 周勇, 邹志刚. 物理学报, 2015, 64 (9), 094209.]
(54) Abe, R. Bull. Chem. Soc. Jpn. 2011, 84 (10), 1000. doi: 10.1246/bcsj.20110132
(55) Yu, J. G.: Wang, S. H.: Low, J. X.: Xiao, W. Phys. Chem. Chem. Phys. 2013, 15, 16883. doi: 10.1039/c3cp53131g
(56) Liao, W. J.: Murugananthan, M.: Zhang, Y. R. Phys. Chem. Chem. Phys. 2015, 17, 8877. doi: 10.1039/C5CP00639B
(57) Chen, X. X.: Huang, X. T.: Yi, Z. G. Chem. Eur. J. 2014, 20, 17590. doi: 10.1002/chem.201404284
(58) Yu, W. L.: Xu, D. F.: Peng, T. Y. J. Mater. Chem. A 2015, 3, 19936. doi: 10.1039/c5ta05503b
(59) Hong, Y. Z.: Jiang, Y. H.: Li, C. S.: Fan, W. Q.: Yan, X.: Yan, M.: Shi, W. D. Appl. Catal. B 2016, 180, 663. doi: 10.1016/j.apcatb.2015.06.057
(60) Yang, Y. X.: Guo, W.: Guo, Y. N.: Zhao, Y. H.: Yuan, X.: Guo, Y. H. J. Hazard. Mater. 2014, 271, 150. doi: 10.1016/j.jhazmat.2014.02.023
(61) Zhang, J. F.: Hu, Y. F.: Jiang, X. L.: Chen, S. F.: Meng, S. G.: Fu, X. L. J. Hazard. Mater. 2014, 280, 713. doi: 10.1016/j.jhazmat.2014.08.055
(62) Chen, X.: Tan, P. F.: Zhou, B. H.: Dong, H. G.: Pan, J.: Xiong, X. J. Alloy. Compd. 2015, 647, 456. doi: 10.1016/j.jallcom.2015.06.056
(63) Shi, L.: Liang, L.: Wang, F. X.: Liu, M. S.: Sun, J. M. J. Mater. Sci. 2015, 50, 1718. doi: 10.1007/s10853-014-8733-y
(64) Kumar, S.: Tonda, S.: Baruah, A.: Kumar, B.: Shanker, V.Dalton Trans. 2014, 43, 16105. doi: 10.1039/c4dt01076k
(65) Tian, N.: Huang, H.W.: He, Y.: Guo, Y. X.: Zhang, T. R.: Zhang, Y. H. Dalton Trans. 2015, 44, 4297. doi: 10.1039/c4dt03905j
(66) Feng, Y.: Shen, J. C.: Cai, Q. F.: Yang, H.: Shen, Q. H. New J. Chem. 2015, 39, 1132. doi: 10.1039/c4nj01433b
(67) He, Y. M.: Zhang, L. H.: Wang, X. X.: Wu, Y.: Lin, H. J.: Zhao, L. H.: Weng, W. Z.: Wan, H. L.: Fan, M. H. RSC Adv. 2014, 4, 13610. doi: 10.1039/c4ra00693c
(68) Bai, Y.: Wang, P. Q.: Liu, J. Y.: Liu, X. J. RSC Adv. 2014, 4, 19456. doi: 10.1039/c4ra01629g
(69) Meng, S. G.: Ning, X. F.: Zhang, T.: Chen, S. F.: Fu, X. L.Phys. Chem. Chem. Phys. 2015, 17, 11577. doi: 10.1039/C5CP01523E
(70) Kondo, K.: Murakami, N.: Ye, C.: Tsubota, T.: Ohno, T. Appl. Catal. B 2013, 142, 362. doi: 10.1016/j.apcatb.2013.05.042
(71) Li, M. L.: Zhang, L. X.: Fan, X. Q.: Zhou, Y. J.: Wu, M. Y.: Shi, J. L. J. Mater. Chem. A 2015, 3, 5189. doi: 10.1039/c4ta06295g
(72) He, Y. M.: Zhang, L. H.: Fan, M. H.: Wang, X. X.: Walbridge, M. L.: Nong, Q. Y.: Wu, Y.: Zhao, L. H. Sol. Energy Mater. Sol. Cells 2015, 137, 175. doi: 10.1016/j.solmat.2015.01.037
(73) He, Y. M.: Zhang, L. H.: Teng, B. T.: Fan, M. H. Environ. Sci. Technol. 2015, 49, 649. doi: 10.1021/es5046309
(74) Li, W. B.: Feng, C.: Dai, S. Y.: Yue, J. G.: Hua, F. X.: Hou, H.Appl. Catal. B 2015, 168, 465.
(75) Yang, X. F.: Chen, Z. P.: Xu, J. S.: Tang, H.: Chen, K. M.: Jiang, Y. ACS Appl. Mater. Interfaces 2015, 7, 15285. doi: 10.1021/acsami.5b02649
(76) Zhao, G. X.: Huang, X. B.: Fina, F.: Zhang, G.: Irvine, J. T. S.Catal. Sci. Technol. 2015, 5, 3416. doi: 10.1039/c5cy00379b
(77) Zhu, J. F.: Zä: ch, M. Curr. Opin. Colloid Interface Sci. 2014, 14, 260.
(78) Chen, Z. H.: Wang, W. L.: Zhang, Z. G.: Fang, X. M. J. Phys. Chem. C 2013, 117, 19346. doi: 10.1021/jp406508y
(79) Wang, Q.: Li, Y. B.: Hisatomi, T.: Nakabayashi, M.: Shibata, N.: Kubota, J.: Domen, K. J. Catal. 2015, 328, 308. doi: 10.1016/j.jcat.2014.12.006
(80) Yamada, Y.: Nomura, A.: Tadokoro, H.: Fukuzumi, S. Catal. Sci. Technol. 2015, 5, 428. doi: 10.1039/C4CY01005A
(81) Lasa, H. I. D.: Rosales, B. S. Photocatalytic Technologies: Science Press: Beijing, 2010: pp 111-144: translated by Liu, Y., Liu, C. Y. [Lasa, H. I. D.: Rosales, B. S. 光催化技术. 刘云, 刘春艳, 译. 北京: 科学出版社, 2010: 111-114.]
(82) Katsumata, H.: Tachi, Y.: Suzuki, T.: Kaneco, S. RSC Adv. 2014, 4, 21405. doi: 10.1039/c4ra02511c
(83) Yang, X. F.: Tang, H.: Xu, J. S.: Antonietti, M.: Shalom, M.ChemSusChem 2015, 8, 1350. doi: 10.1002/cssc.v8.8
(84) Tam, W.W. S.: Wong, T.W.: Wong, A. H. S. Atmos. Environ. 2015, 120, 360. doi: 10.1016/j.atmosenv.2015.08.068
(85) Rodopoulou, S.: Samoli, E.: Chalbot, M. C. G.: Kavouras, I. G.Sci. Total Environ. 2015, 536, 872. doi: 10.1016/j.scitotenv.2015.06.056
(86) Farhanian, D.: Haghighat, F. Build Environ. 2014, 72, 34. doi: 10.1016/j.buildenv.2013.10.014
(87) Yang, Z. Z.: Cai, T. J. Chin. J. Public Health 2003, 19 (6), 765.[杨振洲, 蔡同建. 中国公共卫生, 2003, 19 (6), 765.]
(88) Tang, Z.W.: Cheng, J. L.: Zhang, H, Y.: Fan, X. Y. J. Hydraul. Eng. 2009, 40 (9), 1064. [唐阵武, 程家丽, 张化永, 范修远. 水利学报, 2009, 40 (9), 1064.]
(89) Chen, S. F.: Hu, Y. F.: Jiang, X. L.: Meng, S. G.: Fu, X. L.Mater. Chem. Phys. 2015, 149, 512.
(90) Wang, J. C.: Zhang, L.: Fang, W. X.: Ren, J.: Li, Y. Y.: Yao, H.C.: Wang, J. S.: Li, Z. J. ACS Appl. Mater. Interfaces 2015, 7, 8631. doi: 10.1021/acsami.5b00822
(91) Liu, Y. S.: Ji, G. B.: Dastageer, M. A.: Zhu, L.: Wang, J. Y.: Zhang, B.: Chang, X. F.: Gondal, M. A. RSC Adv. 2014, 4, 56961. doi: 10.1039/C4RA10670A
(92) Sun, Y. H. Pet. Chem. Energy Cons. 2011, 2, 42. [孙延辉. 石油和化工节能, 2011, 2, 42.]
(93) Ohno, T.: Murakami, N.: Koyanagi, T.: Yang, Y. J. CO2 Util. 2014, 6, 17.
(94) Shang, X. K.: Liu, R. J.: Zhang, G. J.: Zhang, S. J.: Cao, H. B.: Gu, Z. J. New J. Chem. 2014, 38, 1315. doi: 10.1039/c3nj01184d
(95) Miseki, Y.: Kusama, H.: Sugihara, H.: Sayama, K. J. Phys. Chem. Lett. 2010, 1, 1196. doi: 10.1021/jz100233w
(96) Xu, Y.: Schoonen, M. Am. Mineral. 2000, 85, 543. doi: 10.2138/am-2000-0416
(97) Wang, H. Y.: Jiang, Z. P.: Yang, H.W. Res. Environ. Sci. 2008, 21 (5), 14. [王海燕, 蒋展鹏, 杨宏伟. 环境科学研究, 2008, 21
(5), 14.]
(98) Suzuki, T. M.: Iwase, A.: Tanaka, H.: Sato, S.: Kudo, A.: Morikawa, T. J. Mater. Chem. A 2015, 3, 13283. doi: 10.1039/C5TA02045J
(99) Kato, H.: Sasaki, Y.: Shirakura, N.: Kudo, A. J. Mater. Chem. A 2013, 1, 12327. doi: 10.1039/c3ta12803b
(100) Zhou, H.: Ding, L.: Fan, T. X.: Ding, J.: Zhang, D.: Guo, Q. X.Appl. Catal. B 2014, 147, 221. doi: 10.1016/j.apcatb.2013.08.025
(101) Min, Y. L.: He, G, Q.: Xu, Q. J.: Chen, Y. C. J. Mater. Chem. A 2014, 2, 1294. doi: 10.1039/C3TA13687F
(102) Mogal, S. I.: Gandhi, V. G.: Mishra, M.: Tripathi, S.: Shripathi, T.: Joshi, P. A.: Shah, D. O. Ind. Eng. Chem. Res. 2014, 53, 5749. doi: 10.1021/ie404230q
(103) Katsumata, H.: Sakai, T.: Suzuki, T.: Kaneco, S. Ind. Eng. Chem. Res. 2014, 53, 8018. doi: 10.1021/ie5012036
(104) Zhu, Z. F.: Du, J.: Li, J. Q.: Zhang, Y. L.: Liu, D, G.: Yu, H. G.J. Funct. Mater. 2011, 42 (10), 1916. [朱振峰, 杜娟, 李军奇, 张艳丽, 刘佃光, 于红光. 功能材料, 2011, 42 (10), 1916.]
(105) Huang, Z. A.: Sun, Q.: Lv, K. L.: Zhang, Z. H.: Li, M.: Li, B.Appl. Catal. B 2015, 164, 420. doi: 10.1016/j.apcatb.2014.09.043
(106) Chen, S. H.: Peng, F.: Wang, H. J. Mod. Chem. Ind. 2004, 24
(7), 24. [陈水辉, 彭峰, 王红娟. 现代化工, 2004, 24 (7), 24.]
(107) Modak, B.: Ghosh, S. K. J. Phys. Chem. B 2015, 119, 11089. doi: 10.1021/acs.jpcb.5b02906
(108) Yin, R.: Luo, Q. Z.: Wang, D. S.: Sun, H. T.: Li, Y. Y.: Li, X.Y.: An, J. J. Mater. Sci. 2014, 49, 6067. doi: 10.1007/s10853-014-8330-0
(109) Zang, Y. P.: Li, L. P.: Li, X. G.: Lin, R.: Li, G. G. Chem. Eng. J. 2014, 246, 277. doi: 10.1016/j.cej.2014.02.068
(110) Wang, K.: Li, Q.: Liu, B. S.: Cheng, B.: Ho, W. K.: Yu, J. G.Appl. Catal. B 2015, 176, 44. doi: 10.1016/j.apcatb.2015.03.045

1. ZHANG Xue, HAN Yang, CHAI Shuang-Zhi, HU Nan-Tao, YANG Zhi, GENG Hui-Juan, WEI Hao.Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1330-1346
2. WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian.Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016,32(3): 728-736
3. LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo.PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2015,31(4): 764-770
4. YANG Jun-Lin.我国物理化学领域2014 年典型研究进展及其对科技工作者的启示[J]. Acta Phys. -Chim. Sin., 2015,31(3): 589-504
5. YAO Li-Zhen, KONG De-Sheng, DU Jiu-Yao, WANG Ze, ZHANG Jing-Wei, WANG Na, LI Wen-Juan, FENG Yuan-Yuan.Enhancement of the Photoelectrochemical Activity of α-Fe2O3 Materials by Surface Modification with Vanadium[J]. Acta Phys. -Chim. Sin., 2015,31(10): 1895-1904
6. LIU Jian-Xin, WANG Yun-Fang, WANG Ya-Wen, FAN Cai-Mei.Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts[J]. Acta Phys. -Chim. Sin., 2014,30(4): 729-737
7. CHEN Wei, WANG Hui, CHEN Xiao-Ping, MAO Li-Qun, SHANGGUAN Wen-Feng.Photocatalytic Overall Water Splitting on Perovskite H1.9K0.3La0.5Bi0.1Ta2O7 with Pt/WO3 under the Z Scheme System[J]. Acta Phys. -Chim. Sin., 2014,30(11): 2101-2106
8. LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan.Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide[J]. Acta Phys. -Chim. Sin., 2014,30(10): 1957-1962
9. RUAN Lin-Wei, QIU Ling-Guang, ZHU Yu-Jun, LU Yun-Xiang.Analysis of Electrical and Optical Properties of g-C3N4 with Carbon-Position Doping[J]. Acta Phys. -Chim. Sin., 2014,30(1): 43-52
10. DUAN Gui-Hua, GAO Hong-Ze, WANG Li-Juan, ZHANG Hou-Yu, MA Yu-Guang.Charge Transport Properties of Anthracene Derivatives[J]. Acta Phys. -Chim. Sin., 2010,26(08): 2292-2297
11. NI Zhe-Ming, XU Qian, PAN Guo-Xiang, MAO Jiang-Hong.Theoretical Processing in Understanding the Structures and Properties of Layered Double Hydroxides[J]. Acta Phys. -Chim. Sin., 2009,25(04): 792-805
12. CHEN Hong-Xiang;ZHOU Jian-Zhang;XI Yan-Yan;LAN Bi-Bo;FENG Zeng-Fang;YAO Guang-Hua;LIN Zhong-Hua.Charge Transport Performance of Nafion-based Redox Polymer in Atmosphere[J]. Acta Phys. -Chim. Sin., 2007,23(03): 404-408
13. GAO Chen;BAO Jun;LUO Zhen-Lin;LIU Wen-Han.Recent Progresses in the Combinatorial Materials Science[J]. Acta Phys. -Chim. Sin., 2006,22(07): 899-912
14. LI Zi-Heng; WANG De-Jun; WANG Ping; WEI Xiao; ZHANG Qing-Lin.Research on Characteristics of Photogenerated Charge in Nano-TiO2[J]. Acta Phys. -Chim. Sin., 2005,21(03): 310-314
15. Hao Yan-Zhong, Yang Mai-Zhi, Yu Chi-Zhen, Cai Sheng-Min.Charge Transport Properties of TiO2 Nanocrystalline/Nanoporous Film[J]. Acta Phys. -Chim. Sin., 1998,14(04): 309-314
16. Ye Jian-Hui.Impedance Analysis of Fe(II/III) Ions/Nafion Film Coated Electrode System[J]. Acta Phys. -Chim. Sin., 1992,8(03): 364-369
17. ZHU Li, MA Xin-Guo, LIU Na, XU Guo-Wang, HUANG Chu-Yun.Band Structure Modulation and Carrier Transport Process of Doped g-C3N4 with Alkali Metal[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
18. HAO Xu-Qiang, YANG Hao, JIN Zhi-Liang, XU Jing, MIN Shi-Xiong, LÜ Gong-Xuan.Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production from Water Splitting[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top