Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (6): 1501-1510    DOI: 10.3866/PKU.WHXB201603171
ARTICLE     
Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR
Meng-Ting SUN1,Bi-Chun HUANG1,2,*(),Jie-Wen MA1,Shi-Hui LI1,Li-Fu DONG1
1 College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
2 Key Laboratory of the Ministry of Education for Pollution Control and Ecosystem Restoration in Industry Clusters,South China University of Technology, Guangzhou 510006, P. R. China
Download: HTML     PDF(12282KB) Export: BibTeX | EndNote (RIS)      

Abstract  

α-MnO2 nanorods,γ-MnO2 nanosheets,and δ-MnO2 nanofilm-assembled microspheres wereprepared using a hydrothermal method and evaluated as catalysts for the selective catalytic reduction(SCR)of nitrogen oxides(NOx).They were also structurally characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),N2 adsorption- desorption,temperatureprogrammedreduction with hydrogen(H2-TPR),temperature-programmed desorption of ammonia(NH3-TPD),X-ray photoelectron spectroscopy(XPS),and Raman spectroscopy.The γ-MnO2 nanosheets performed thebest for the reduction of NOx and selectivity of N2,while the α-MnO2 nanorods performed the worst.Structuralanalysis indicated that the main factor determining the catalytic activities of the nanomaterials was not thespecific surface area but the crystal structure and the exposed active crystals.The γ-MnO2 nanosheets performedbest because their exposed(131)planes contained multiple Mn cations in coordinatively unsaturatedenvironments,which formed numerous strongly acidic sites.They also benefited from active oxygen species.The active sites allowed the activation of NH3 and NOx at lower temperatures.Moreover,high concentrationsof liquid oxygen and Mn cations at high oxidation states facilitated the redox reactions.



Key wordsSelective catalytic reduction      Nitrogen oxide      MnO2 nanomaterial      Hydrothermal synthesis      Morphology effect     
Received: 23 December 2015      Published: 17 March 2016
MSC2000:  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(51478191);Guangdong Provincial Science and Technology Project, China(2014A020216003)
Corresponding Authors: Bi-Chun HUANG     E-mail: cebhuang@scut.edu.cn
Cite this article:

Meng-Ting SUN,Bi-Chun HUANG,Jie-Wen MA,Shi-Hui LI,Li-Fu DONG. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR. Acta Physico-Chimica Sinca, 2016, 32(6): 1501-1510.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603171     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1501

Fig 1 SEM images of the catalysts
Fig 2 XRD patterns of the catalysts
Fig 3 Raman spectra of the catalysts
Fig 4 SCR activity of the catalysts
Fig 5 TEM images of the catalysts
Sample SBET VTotal Average pore size
(m2*g1) (cm3-g1) nm
nanorod 35.58 0.07 5.84
nanosheet 37.56 0.22 8.21
nanofilm-assembled 54.40 0.18 7.27
microsphere
Table 1 BET surface areas, pore volumes, and pore diameters of the catalysts
Sample Peak number Temperature at maximum/℃ Quantity/(mmol ? g-1) Total quantity/(mmol ? g-1)
nanorod 1 567 0.16 1.30
2 657 0.41
3 827 0.73
nanosheet 1 543 2.66 3.70
2 830 1.04
nanofilm-assembled microsphere 1 526 0.77 1.85
2 799 1.08
Table 2 Analysis data of the acidity (the position of the desorption peaks and NH3 desorption amount) of the catalysts
Fig 6 NH3-TPD patterns of the catalysts
Sample Atomiccomposition/% Content of oxygen species/% Content of Mn/% Different valence Mn ratio
Mn O lattice oxygen surface chemisorbed oxygen surface hydroxyl groups Mn2+ Mn3+ Mn4+ (Mn3++Mn4+)/ (Mn2++Mn3++Mn4+)
nanorod 27.76 72.24 75.94 16.68 7.38 15.50 32.79 51.71 84.50
nanosheet 35.85 64.15 62.48 22.64 14.88 4.48 47.91 47.61 95.52
nanofilm-assembled microsphere 27.94 72.06 67.85 16.73 15.42 10.53 39.91 49.56 89.47
Table 3 Surface atomic concentrations of the catalysts
Fig 7 Mn 2p3/2 and O 1s XPS spectra of the catalysts
SamplePeak numberTemperature at maximum/℃Quantity/(mmol ? g1)
nanorod129512.72
nanosheet125210.94
23334.60
33620.62
nanofilm-assembled microsphere12469.81
Table 4 Data analyses of the redox ability (the position of the reduction peaks and the hydrogen consumption) of the catalysts
Fig 8 H2-TPR patterns of the catalysts
1 Wang L. S. ; Huang B. C. ; Su Y. X. Chem. Eng. J. 2012, 192, 232.
2 Tian W. ; Yang H. S. ; Fan X. Y. J.. Hazard. Mater 2011, 188, 105.
3 Pourkhalila M. ; Moghaddama A. Z. ; Rashidib A. ; Towfighia J. ; Mortazavic Y. Appl. Surf. Sci 2013, 279, 250.
4 Lian Z. H. ; Liu F. D. ; He H. ; Shi X. Y. ; Mo J. S. ; Wu Z. B. Chem. Eng. J. 2014, 250, 390.
5 Wang X. ; Zheng Y. Y. ; Xu Z. ; Liu X. B. ; Zhang Y. B. Catal. Commun 2014, 50, 34.
6 Pan S.W. ; Luo H. C. ; Li L. ; Wei Z. L. ; Huang B. C. J. Mol. Catal. A 2013, 377, 154.
7 Fang D. ; Xie J. L. ; Mei D. ; Zhang Y. M. ; He F. ; Liu X. Q. ; Li Y. M. RSC Adv 2014, 4, 25540.
8 Cai S. X. ; Zhang D. S. ; Shi L. Y. Nanoscale 2014, 6, 7346.
9 Shu Z. ; Huang W. M. ; Hua Z. L. ; Zhang L. X. ; Cui X. Z. ; Chen Y. ; Chen H. R. ; Wei C. Y. ; Wang Y. X. ; Fan X. Q. ; Yao H. L. ; He D. N. ; Shi J. L. J.. Mater. Chem. A 2013, 1, 10218.
10 Fang C. ; Zhang D. S. ; Cai S. X. ; Zhang L. ; Huang L. ; Li H. R. ; Maitarad P. ; Shi L. Y. ; Gao R. H. ; Zhang J. P. Nanoscale 2013, 5, 9199.
11 Zuo J. L. ; Chen Z. H. ; Wang F. R. ; Yu Y. H. ; Wang L. F. ; Li X. H. Ind. Eng. Chem. Res 2014, 53, 2647.
12 Sun M. ; Lan B. ; Yu L. ; Ye F. ; Song W. ; He J. ; Diao G. Q. ; Zheng Y. Y. Mater. Lett 2012, 86, 18.
13 Dai Y. ; Li J. H. ; Peng Y. ; Tang X. F Acta Phys. -Chim. Sin. 2012, 28, 1771.
13 戴韵; 李俊华; 彭悦;唐幸福. 物理化学学报, 2012, 28, 1771.
14 Li Y. ; Shen W. J Sci. China Chem 2012, 42, 376.
14 李勇; 申文杰. 中国科学:化学, 2012, 42, 376.
15 Li Y. ; Liu Q. Y. ; Shen W. J Dalton Trans 2011, 40, 5811.
16 Liang S. H. ; Teng F. ; Bulgan G. ; Zong R. L. ; Zhu Y.. F. J. Phys. Chem. C 2008, 112, 5307.
17 Duan X. C. ; Yang J. Q. ; Gao H. Y. ; Zheng W. J Cryst. Eng. Comm 2012, 14, 4196.
18 Lu, J. Controllable Sythesis and Catalytic Property of α-MnO2 Nanopaticles. Master Dissertation. Hebei Normal University, Shijiazhuang, 2010.
18 芦佳. α-MnO2纳米颗粒的可控制备及催化性能研究[D]石家庄:河北师范大学, 2010.
19 Bai B. Y. ; Li J. H. ; Hao J. M. Appl. Catal. B: Environ. 2015, 164, 241.
20 Peng Y. ; Chang H. Z. ; Dai Y. Proc. Environ. Sci 2013, 18, 384.
21 Andreoli S. ; Deorsola F. A. ; Galletti C. ; Pirone R. Chem. Eng. J 2015, 278, 174.
22 Zhang J. ; Zhang J. H. ; Zhang C. B. ; He H. Acta Phys. -Chim. Sin 2015, 31, 353.
22 张洁; 张江浩; 张长斌;贺泓. 物理化学学报, 2015, 31, 353.
23 Yang C. ; Liu X. Q. ; Huang B. C. ; Wu Y. M Acta Phys. -Chim. Sin 2014, 30, 1895.
23 杨超; 刘小青; 黄碧纯; 吴友明. 物理化学学报, 2014, 30, 1895.
24 Wang C. ; Sun L. ; Cao Q. Q. Appl. Catal. B: Environ. 2001, 101, 598.
25 Yuan R. M. ; Fu G. ; Xu X. ; Wan H. L Phys. Chem. Chem. Phys 2011, 13, 453.
26 Fang C. ; Zhang D. S. ; Cai S. X. ; Zhang L. ; Huang L. ; Li H. R. ; Maitarad P. ; Shi L. Y. ; Gao R. H. ; Zhang J. P. Nanoscale 2013, 5, 9199.
27 Lu X. N. ; Song C. Y. ; Chang C. C. ; Teng Y. X. ; Tong Z. S. ; Tang X. L. Ind. Eng. Chem. Res 2014, 53, 11604.
28 Kijlstra W. S. ; Brands D. S. ; Poels E. K. ; Bliek A. J. Catal. 1997, 171, 208.
29 Chen F. ; Huang B. C. ; Yang Y. X. ; Liu X. Q. ; Yu C. L 2015, 31 2375, 2375.
29 陈锋; 黄碧纯; 杨颖欣; 刘小青;喻成龙. 物理化学学报, 2015, 31, 2375.
30 Kang M. ; Park E. D. ; Kim J. M. ; Yie J. E. Appl. Catal. A: Gen 2007, 327, 261.
31 Yang Y. X. ; Ma J.W. ; Yu C. L. ; Sun M. T. ; Huang B. C. ; Wu Y. M. Acta Scientiae Circumstantiae 2015.
31 杨颖欣; 马杰文; 喻成龙; 孙梦婷; 黄碧纯;吴友明. 环境科学学报, 2015.
32 Fu M. F. ; Li C. T. ; Lu P. ; Qu L. ; Zhang M. Y. ; Zhou Y. ; Yu M. G. Catal. Sci. Technol 2014, 4, 14.
33 Park K. ; Lee S. ; Kim S. ; Kwon D. ; Hong S. Catal. Lett. 2013, 143, 246.
34 Jiao J. Z. ; Li S. H. ; Huang B. C. Acta Phys. -Chim. Sin. 2015, 31, 1383.
34 焦金珍; 李时卉;黄碧纯. 物理化学学报, 2015, 31, 1383.
35 Li J.W. ; Song C. ; Liu S. T Acta Chim. Sin 2012, 70, 2347.
35 李经纬; 宋灿;刘善堂. 化学学报, 2012, 70, 2347.
36 Chen R. X. ; Yu J. G. ; Xiao W. J. Mater. Chem. A 2013, 1, 11682.
37 Su Y. X. ; Fan B. X. ; Wang L. S. ; Liu Y. F. ; Huang B. C. ; Fu M. L. ; Chen L. M. ; Ye D. Q. Catal. Today 2013, 201, 115.
[1] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[2] LIU Xiao-Qing, LI Shi-Hui, SUN Meng-Ting, YU Cheng-Long, HUANG Bi-Chun. Preparation, Characterization and Low-Temperature NH3-SCR Activity of MnOx/SAPO-11 Catalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1236-1246.
[3] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1383-1390.
[4] YAO Xiao-Jiang, GONG Ying-Tao, LI Hong-Li, YANG Fu-Mo. Research Progress of Ceria-Based Catalysts in the Selective Catalytic Reduction of NOx by NH3[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 817-828.
[5] ZHANG Yu, WANG Hong-Ning, CHEN Ruo-Yu. In situ Synthesis of Cu-SSZ-13/Cordierite Monolithic Catalyst for the Selective Catalytic Reduction of NO with NH3[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 329-336.
[6] LIU Zhen-Zhen, SHI Yong, LI Chun-Yan, ZHAO Qi-Dong, LI Xin-Yong. Electrochemical Synthesis of Cu3(BTC)2-MOF for Selective Catalytic Reduction of NO with NH3[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2366-2374.
[7] CHEN Feng, HUANG Bi-Chun, YANG Ying-Xin, LIU Xiao-Qing, YU Cheng-Long. Synthesis, Characterization and NH3-SCR Activity of MnSAPO-34 Molecular Sieves[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2375-2385.
[8] HAO Teng, WANG Jun, YU Tie, WANG Jian-Qiang, SHEN Mei-Qing. Effect of NO2 on the Selective Catalytic Reduction of NO with NH3 over Cu/SAPO-34 Molecular Sieve Catalyst[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1567-1574.
[9] GAO Lin-Xin, JIANG Xin, GUO Sen. MnOx/CeO2/SiO2 Catalysts Prepared by Adsorption Phase Reaction Technique for Selective Catalytic Reduction of NOx at Low-Temperature[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1303-1308.
[10] YU Zai-Lu, XIE Peng-Fei, TANG Xing-Fu, YUE Ying-Hong, HUA Wei-Ming, GAO Zi. Selective Catalytic Reduction of NO with NH3 over MnOx-CeO2-WO3-ZrO2:Effect of Calcination Temperature[J]. Acta Physico-Chimica Sinca, 2014, 30(6): 1175-1179.
[11] YANG Chao, LIU Xiao-Qing, HUANG Bi-Chun, WU You-Ming. Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts[J]. Acta Physico-Chimica Sinca, 2014, 30(10): 1895-1902.
[12] DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia. Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 2062-2068.
[13] SHI Lin, YU Tie, WANG Xin-Quan, WANG Jun, SHEN Mei-Qing. Properties and Roles of Adsorbed NH3 and NOx over Cu/SAPO-34 Zeolite Catalyst in NH3-SCR Process[J]. Acta Physico-Chimica Sinca, 2013, 29(07): 1550-1557.
[14] LUO Qian-Qian, ZHOU Shi-Dong, REN Yuan, Li Niu, HUANG Zhi-Peng, GUAN Nai-Jia, XIANG Shou-He. Phenomenon of Structural Transformation of Ethylenediamine- Oriented Synthesis of Microporous Cobalt Phosphate[J]. Acta Physico-Chimica Sinca, 2013, 29(05): 911-919.
[15] DENG Jie, TAO Jie, WU Tao, TAO Hai-Jun. Growth Mechanism and Characterization of Flexible TiO2 Nanowhisker Films Hydrothermally Synthesized in Dilute Alkaline Solution[J]. Acta Physico-Chimica Sinca, 2013, 29(04): 858-866.